
EP-07-002: Experiment 2

Experiment 2: LCD Display Interface
Estimated Time: 12 hours

Prescribed Reading
Code of Conduct for use of Laboratory Equipment (PM-07-001.PDF)
Policy on Academic Misconduct (PM-07-002.PDF)
Introduction to ... (PM-07-003.PDF)
Getting to know the Adapt9S12X Development Board (AM-07-001.PDF)
The Freescale (HS12) Assembler (AM-07-002.PDF)

Familiarity With
Full Assembly Instruction Set for the MC9S12XDP512 (RU-07-001.PDF)
Aapt9S12X Memory Map (RU-07-002.PDF)
Usable Routines provided by Dbug12 (RU-07-003.PDF)
MC9S12XDP512 Interrupt Vector Map (RU-07-004.PDF)
MC9S12XDP512: On Chip Peripherals (RU-07-005.PDF)

Aim

To interface an LCD with the microprocessor to perform functions of entering strings and
editing them by scrolling.

Introduction

LCD displays are low powered and are often used in portable instrumentation. The LCD
unit we will be using in this experiment is able to store 2 lines of 40 characters showing
16 characters on each line of the screen at one time. These lines are automatically
wrapped so that moving the characters to the right or left will result in some characters
leaving the screen and others appearing at the opposite side. The LCD is interfaced to
the Adapt912 via a custom built PCB. The PCB takes care of powering the LCD off the
Adapt9S12X’s supply and sets the contrast of the LCD.

H e l l o W o r l d

5 0 p i n c o n n e c t o r

Figure 1: Diagram of the custom built LCD

Revised: 03/01/2008

EP-07-002: Experiment 2

Command Structure

 The LCD unit recognizes several commands that are used to control the display. The
commands are sent to the LCD from the microprocessor, using a combination of
high/low signals to its register select (RS), read/write (R/W) and data byte (DB) lines.

To send a command to the LCD unit the command is loaded onto port PA connected to
the 8 bit port DB, and R/W and RS lines connected to port PB. The LCD is enabled
through the transition low-high-low (see the timing diagram) of RS. Note: Because the
enable signal must be longer than a set time, a delay must be used between turning the
enable on and off. The transformation of the data lines from the Adapt9S12X to the LCD
is shown in the following table.

Adapt9S12X LCD Description
PA0-PA7 DB 8 bit Data Line
PB7 E Enable Signal
PB6 R/W Read / Write Signal
PB5 RS Resource Select Line

The configurations of the lines to the LCD for all the instructions you will be using are
shown below. The final program to perform these functions should follow the basic
structure of the data flow diagram given at the end of this experiment.

Figure 2:LCD Instruction Set [taken from Dick Smith Data Sheet].

Revised: 03/01/2008

EP-07-002: Experiment 2

Part A: Initializing the LCD

Connect the LCD to the H2 header of the Adapt9S12X. Once it is connected you should see that the top
line of the LCD is partially lit. The LCD is connected to the Adapt9S12X through the GPIO ports A and B,
so the first task that your program must do is to set up ports A and B as outputs. Create a new project in
Code Warrior called “C2” and modify it as per the previous experiment. Write a subroutine called
Init_Ports, that performs the task outlined in the pseudo code below.

Module Init_Ports(IN: OUT:)
Begin

//Set both port A and B for Output
Write $FF to DDRA
Write $FF to DDRB
Set E = 0

End

In order to get the LCD to initialize properly a strict initialization sequence must be followed. The
initialization procedure is outlined below in pseudo code or pictorially in figure 4. Each of these control
words must be written to the display in the correct order with the adequate delays between them. The
delays mentioned on initialization sequence are minimum delays that must be enforced.

Program PartA
Begin

Delay(IN: 30000)
Init_Ports(IN: OUT:)
set A=%00110000
set B=%00000000
Write_LCD(IN: A,B OUT:)
Delay(IN: 39)
set A=%00001111
set B=%00000000
Write_LCD(IN: A,B OUT:)
Delay(IN: 39)
set A=%00000001
set B=%00000000
Write_LCD(IN: A,B OUT:)
Delay(IN: 1530)
set A=%00000110
set B=%00000000
Write_LCD(IN: A,B OUT:)
Delay(IN: 1530)

End

When writing data to the LCD, whether it is a character or one of the initialization strings the write cycle
timing diagram must be followed as shown in figure 5. The LCD write cycle (Figure 5) requires you to set
the values of RS, RW and DB and wait 240ns the E line is then set and left high for an additional 240ns.
The E line is then set low and the write cycle is complete. This explanation assumes that the E line is
originally set low.

Write a subroutine called Write_LCD to implement the LCD write cycle. The subroutine must allow the
values of RS, RW and DB to be passed to it via accumulators A and B. The pseudo code for Write_LCD
is shown below.

Revised: 03/01/2008

EP-07-002: Experiment 2

Module Write_LCD(IN: A, B OUT:)
Begin

Write A to PortA Data Register
Write B to PortB Data Register
Wait for atleast 40ns
Set E high (PB7)
Wait for atleast 240ns
Set E low (PB7)
Wait for atleast 240ns

End

Using the subroutine WriteLCD implement the LCD initialization procedure. This will also require you to
write a delay subroutine.

Module Delay(IN: value_in_useconds)
Begin

//See exercise 11 in Experiment C1.
End

After successfully completing this procedure the LCD should have an empty screen with a flashing
cursor in its upper-left corner.

It is encourage that you view the data sheet for the LCD for additional information not included in this lab
script. The data sheet can be found on the Maxwell website.

Part B: Displaying a String of Text

Using the program created in part A, add an additional subroutine called lputchar to display a single
character on the LCD. The character to be printed should be passed to this routine via accumulator B.
Test this program by print the character 'A” to the LCD.

Show this working program to your demonstrator.

 Next modify your program by adding a subroutine called lprint that prints a string to the LCD. This
subroutine should use the subroutine lputchar to display the characters that make up the string. The
address of the string should be passed to the subroutine through accumulator X and the string should be
null terminated (0x0). Use the string “Griffith” to test this program.

Next modify this program to display a string that is entered by the user. You may use the subroutine
GetS that you used in Experiment 1 to accommodate the entering of a string. The string should be
echoed to the LCD after the carriage return (CR) character has been typed.

Show this working program to your demonstrator.

Part C: Adding the Menu

Modify the program in Part B so that once the LCD has been initialized, it prompts the user to press a
key. If the 'E' key is pressed then runs the text entry subroutine you developed in Part B. If the 'C' key is
pressed then it clears the LCD screen.

Revised: 03/01/2008

EP-07-002: Experiment 2

Part D: Scrolling

Write a subroutine to scroll the screen, when the letter 'L' is pressed it scrolls to the left or scrolls right
when the letter 'R' is pressed. The screen should scroll until it returns to the original position. i.e. Shift
the screen 40 times to the left or the right.
Finally, the instructions for each key should be displayed on the PC terminal as part of the menu
subroutine.

Show this working program to your demonstrator. A report of this experiment must include the code of
the final working program.

Figure 3: Diagram showing the flow of the proposed system.

Revised: 03/01/2008

Enter String
Scroll Screen

to the RightScroll Screen
to the Left

Clear Screen

Get Character
from Keyboard

Print Instructions

Init LCD

Setup Ports PA
 and PB

E

C

R
L

 Note: Each function returns to Print Instructions once its role is
completed.

EP-07-002: Experiment 2

Figure 4: Initialization Sequence and Timing Diagram for Write Operations to the LCD [from Dick Smith
Data Sheet]

Figure 5: Writing timing Diagram[From Dick Smith Data
Sheet]

Revised: 03/01/2008

	Experiment 2: LCD Display Interface

