
ECE 367 - Experiment #4 
Seven Segment Display Interfacing and Timing 

 

Spring 2006 Semester 
 
 

Introduction 
 
This experiment requires that you construct a circuit interfacing the MicroStamp11 
module with a seven segment display, and write assembly language code to continuously 
display a decimal digit that increments exactly1 once per second. 
 
 
Required Hardware 
 
In addition to the MicroStamp11 module, this experiment requires one single-digit seven 
segment LED display and the 220Ω DIP resistors. 
 
 
Here are the decimal digits 0 through 9 as displayed on a seven segment display: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
1 as determined by the accuracy of the microcontroller’s master clock crystal oscillator 

a 

b 

c 

d 

e 

f 

g 

g f CC a b 

e d CC c dp 

dp 

The pinout diagram on the left is for the Ledtech 
UC5641-11 (Jameco #334879) seven segment 
plus decimal point LED display that is in your 
parts kit.  The two common cathode (CC) 
terminals are tied to all seven LEDs as shown 
below:  

d e f g dp c b  a CC CC 



Wiring Diagram 
 
Build the following circuit on a solderless breadboard.  Note that PA7 and all six bits in 
PortD are configured to operate as output lines: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Sample circuit layout for Laboratory Experiment #4. 
 
 
Software Design 
 
First consider the task of displaying a decimal digit using seven segments.  For example, 
the wiring diagram above tells us that we need to have the following output data on PA7, 
PD5 ... PD0 in order to display digit “3”: 

�����
Ω × �  

�����
�
	��
�
	


�
	��
�
	��
�
	��
�
	
�

CC 

a 

b 

c 

d 

e 

f 

g 

a 

b 
c 

d 
e 
f 
g 



 
Output line logical state 

to display “3” 
corresponding 
segment label 

PA7 1 a 
PD5 1 b 
PD4 1 c 
PD3 1 d 
PD2 0 e 
PD1 0 f 
PD0 1 g 

 
 
Assuming that PA7, PD5 ... PD0  have already been configured to be outputs, here are a 
few lines of code that will cause “3” to be displayed: 

 
 LDAA #$79  ; 7-segment code for "3" 
 STAA PortD,X  ;   sent to PD5...PD0 
 BSET PortA,X,$80 ; PA7<--1 (high bit of the 7-seg code) 
 
(As usual, register X has been initialized to the starting address of the register block and 
PortA/PortD labels have been equated with their respective offset values.) 
 
 
The easiest way to display the decimal digit whose value is in memory variable Digit, for 
example, is by using a sequence of  if/then  blocks such as this one: 
 
Check_if_3: 
 
 LDAA Digit 
 CMPA #3  ; compare Digit to the value 3 
 BNE Check_if_4 
 LDAA #$79  ; send 7-seg. code for 3 to the output 
 STAA PortD,X 
 BSET PortA,X,$80 
 JMP Finished_Task 

 
Check_if_4: 
 

 (etc.) 
 
 
Incrementing the Displayed Digit Once Per Second 
 
Now that you know how to show a decimal digit on a seven segment display device, next 
we will cover the timing aspects of this experiment.  In previous experiments all delays 
were achieved using software loops, so it is natural to consider taking the same approach 
here.  But we will take this opportunity to learn about a special subsystem inside the 
Motorola 68HC11 microcontroller – the hardware timer. 
 
 
 

a 

b 

c 

d 

e 

f 

g 



A software delay loop requires that your code do the counting, and nothing else gets done 
in the meantime.  A hardware timer, on the other hand, does the counting for you while 
the CPU (being controlled by your program code) is free to do other things. 
 
 
16 bit Timer Register TCNT 
 
The 68HC11 hardware timer “TCNT” has 16 bits and is constantly counting up in binary 
(cycling through 216 unique states).  It is called a free-running counter because it is 
always running independently of what the CPU is doing.  TCNT may not be initialized, 
cleared, nor may its counting process be stopped.  It essentially functions as a read-only 
16 bit register whose contents change every {1, 4, 8 or 16} master clock cycles, 
depending on how things are configured.  
 
TCNT may be configured to count in one of four ways: 
 

TCNT Prescaling 
Factor N : 

Time it takes TCNT to increment once: Time it takes TCNT to 
increment 216 times: 

1 0.5 usec =  one clock period2 0.032768 sec 
4 2.0 usec =  four clock periods 0.131072 sec 
8 4.0 usec =  eight clock periods 0.262144 sec 

16 8.0 usec =  sixteen clock periods 0.524288 sec 
 
For example, we can achieve 0.25 sec delay in these four ways: 
 

• Wait for TCNT to increment  500,000 times when  N = 1; 
• Wait for TCNT to increment  125,000 times when  N = 4; 
• Wait for TCNT to increment  62,500 times when  N = 8; 
• Wait for TCNT to increment  31,250 times when  N = 16. 

 
However, by selecting prescaling factor N so that the number of times TCNT needs to 
increment is less than 216 = 65,536 (the number of states in a complete count cycle), we 
greatly simplify the task of detecting when the desired delay has passed.  Thus either N=8 
or N=16 would be used to realize a 0.25 sec delay.  To minimize microcontroller power 
consumption one should always slow down the TCNT counter as much as possible 
(choosing the largest possible N), so the choice of N=16 is best in the example above. 
 
There also exist four Timer Output Compare registers TOC1–TOC4, whose 16-bit 
contents are constantly being compared to the TCNT counter state.  When hardware 
detects that TCNT has incremented to a value equal to that stored in one of the TOC 
registers, then a corresponding flag is set.3  For example, when TCNT = TOC1 then 
OC1F (Output Compare 1 Flag) becomes set.   
 
 

                                                           
2 Since the MicroStamp11 that you have purchased has an internal clock (“E Clock”) frequency = 2 MHz 
3 Also, a hardware interrupt may be triggered or an output pin may be made to change state.  TCNT along 
with its output compare registers is one of the most useful subsystems on the microcontroller. 



The following hardware diagram describes the interaction between TCNT, TOC1 and 
OC1F: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OC1F automatically becomes set when TOC1 = TCNT, and only a software write 
operation can reset it.  One must write 1 to OC1F in order to reset it; writing 0 has no 
effect. 
 
 
These steps are taken to realize 0.25 sec delay using the TCNT timer subsystem: 
 
a) configure4 prescaling factor N = 16; 
b) read5 the value of TCNT; 
c) add 31,250 to this value and store it in TOC16; 
d) clear OC1F7; 
e) wait until OC1F = 1 (polling this flag every so often while performing other tasks); 
f) execute the task that has been waiting for the 0.25 sec delay to pass. 

 
 
Usually the TCNT timer is used to trigger execution of a particular task at uniform 
increments of time, such as every 0.25 sec.  In such case one would append the following 
steps to those above: 
 
g) increment the value of TOC1 by 31,250; 
h) jump to step (d) 

 
 
Answer this question: why is step (g) doing   TOC1 ← TOC1 + 31,250   instead of 
TOC1 ← TCNT + 31,250 ? 

                                                           
4 PR1, PR0 ←1 in TMSK2 register; this must be done within the first 64 clock cycles after power-on reset. 
5 TCNT is at addresses Regbas+[$0E,$0F] 
6 TOC1 is at addresses Regbas+[$16,$17] 
7 OC1F = bit 7 of TFLG1, found at Regbas+$23. 

flip-flop 

 Set 

 Reset 

Q 

TCNT 

TOC1 

equal? 
yes 

read 

write 

OC1F 



The following software flowchart shows how TCNT may be used to control the timing of 
up to five tasks at once: one running most of the time (Task0) and the others (Task1, 
Task2, Task3 and Task4) executing only at certain uniformly-spaced times8: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this experiment you will be using TCNT and TOC1 to execute only two tasks.  Here is 
a simplified flowchart: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
8 Assume that the time required to execute each task is much shorter than the delays administered by TCNT 

OC1F = 1? no 

yes 

Task1: 
update Digit 

add offset 
 to TOC1, 

reset OC1F 

Task0: 
display Digit 

 

OC1F = 1? no 

yes 

execute 
Task1 

add offset1 
to TOC1, 

reset OC1F 

OC2F = 1? no 

yes 

OC3F = 1? no 

yes 

OC4F = 1? 
no 

yes 

execute 
Task2 

execute 
Task3 

execute 
Task4 

add offset2 
to TOC2, 

reset OC2F 

add offset3 
to TOC3, 

reset OC3F 

add offset4 
to TOC4, 

reset OC4F 

execute 
Task0 

 
Task0:  Display memory value Digit 

 on a 7-seg. LED display 
 
 
Task1 pseudocode: 
(executed every 0.1 sec) 
 

Count � Count + 1 
if (Count = 10) 
 Count � 0 
      Digit � Digit + 1 
 if (Digit = 10) 

  Digit � 0 
 end if 
end if 

 
 
        (initially Count = 0, Digit = 0) 



The pseudocode description of Task1 shows the integer Count being incremented.  When 
Count reaches 10 it is reset to 0, and then integer Digit is incremented.  When Digit 
reaches 10 it is reset to 0.  Thus Count is a decimal counter for tenths of a second and 
Digit is a decimal counter for seconds.  We do this is because TCNT cycles too quickly 
(0.524 sec at its slowest pace) to directly realize 1.0 sec delay times. 
 
Finally, here is some useful code that you may use for this lab: 
 
1. Defining memory labels ($0040 - $00FF is RAM on the MicroStamp11): 
 
   Count EQU $0040    ; RAM byte address: tenth-of-sec counter 

Digit EQU $0041    ; RAM byte address: displayed digit value 
 
 
2. Configuring the ports and prescaling factor: 
 
      LDAA   #$01         ; PR1,PR0 <-- 0,1 
     STAA   TMSK2,X      ; (slow down TCNT by factor 4) 
     BSET   PACTL,X,$80 ; configure PA7 as output 
     BSET   DDRD,X,$3F ; configure PD0-PD6 as outputs 
 
 
3. Manipulating Count as part of Task1: 
 
     INC   Count 
     LDAA  Count 
     CMPA  #10 
     BNE   Label_1     ; if Count = 10, 
       CLR   Count       ;  then reset it back to zero 
 
  (etc.) 
 
4. Adding 1/10 sec offset to TOC1 (Incr must be equated with the offset value): 
 
     LDD   TOC1,X      ; D <-- TOC1 
     ADDD  #Incr       ; D <-- D + Incr 
     STD   TOC1,X      ; TOC1 <-- D 
     LDAA  #$80 
       STAA  TFLG1,X     ; Clear the TCNT Output Compare 1 flag 
 
 
Don’t try to get everything working at once – begin by displaying the digit “8” on the 7 
segments.9  This will check both your circuit wiring and correctness of port 
configuration.  Only then proceed to writing and debugging the timing algorithm.  All 
timing must be done using TCNT – no software delays are allowed. 
 
Demonstrate the working circuit to your T.A. 

                                                           
9 Don’t display “8” for very long as this microcontroller is not rated to drive that much current at once.  To 
do it correctly we should buffer the output lines before driving the 7-seg. LED display (e.g. TTL inverters). 


