
ECE 367 - Experiment #6
Kitchen Timer

Spring 2006 Semester

Introduction

This experiment has you construct a circuit interfacing nine I/O lines from the 68HC11
with two seven segment displays and a matrix keypad, and write assembly language code
to realize a programmable countdown “kitchen timer” that allows the user to perform
various functions: preset count value, start/resume and pause countdown. The purpose of
this experiment is to teach advanced hardware and software techniques of interfacing
microcontrollers.

Required Hardware

In addition to the MicroStamp11 module, this experiment requires two seven segment
LED displays, a matrix keypad, two TTL hex inverters (one 74LS04 IC), the 220Ω DIP
resistors and the 10KΩ SIP resistors.

Here is a photo of the completed circuit:

Wiring Diagram

Build the following circuit on a solderless breadboard – the circuit is very similar to that
in Experiment 5. The bidirectional arrows next to {PD2, PD1, PD0} indicate that these
lines will be used for both input and output during run-time.

�����
Ω × �

�����
�
	��
�
	

�
	��
�
	��
�
	��
�
	
�

�����

a

b

c

d

e

f

g

a

b
c

d
e
f
g

a

b

c

d

e

f

g

a

b
c

d
e
f
g

CC CC

tens of seconds digit seconds digit

 �����

n.c.

�����
Ω × �

� � � �

 � � �

� � � �

� � � 	

Once again, for your reference, here are pinout diagrams of the matrix keypad and seven
segment LED display in your lab parts kit:

��� �!�
��� �"�
��� �"�
��� �#

$
��%&�
$
��%��
$
��%��
$
��%'

�����)(*$
�+%&�

�
	��,(*$
�+%��

�
	
-(*$
�+%��

�
	��,(*$
�+%'

�
	��,(
��� �!�

�
	��.(
��� �"�

�
	
�-(
��� �"�

/'0�1�0
��� �#

� � � �

 � � �

� � � �

� � �

a

b

c

d

e

f

g

g f CC a b

e d CC c dp

Segment: Output Line:
 a PA7
 b PD5
 c PD4
 d PD3
 e PD2
 f PD1
 g PD0

 CC (left digit) PA6
 CC (right digit) PA5

Software Design

In this experiment you will be using TCNT and three Output Compare registers to
execute three tasks at different frequencies. Here is a high-level description of the three
tasks:

Task1 keeps count of time using three decimal digits (as in 54.7 sec). This count is
decremented every 0.1 sec when the timer is running. Task1 executes every 1/10 sec.

Task2 multiplexes and updates the 7-segment displays; it executes every 1/200 sec.

Task3 polls the keypad to detect key presses and responds accordingly; it executes every
1/20 sec.

OC3F = 1?
no

yes

OC2F = 1?
no

yes

execute
Task2

add offset1
to TOC2,

reset OC2F

execute
Task3

add offset3
to TOC3,

reset OC3F

OC1F = 1?
no

yes

execute
Task1

add offset1
to TOC1,

reset OC1F

Task1 Details

The memory byte “Mode” is used to indicate whether or not the counter is running or is
paused: Mode = 1 indicates that the timer is counting down, and Mode = 0 indicates that
it is frozen at the current count.

 Digit3 Digit2 Digit1

 (The hardware displays only Digit3 and Digit2)

Task1 pseudocode:
(executed every 0.1 sec)

 if (Mode = 1 and Key_Pressed = 0)

Digit1 � Digit1 − 1 ; decrement 0.1 sec digit
if (Digit1 = −1)
 Digit1 � 9
 Digit2 � Digit2 − 1 ; decrement 1.0 sec digit
 if (Digit2 = −1)

 Digit2 � 9
 Digit3 � Digit3 − 1 ; decrement 10 sec digit
 if (Digit3 = −1)

 Digit1 � 0 ; end of countdown is reached
 Digit2 � 0
 Digit3 � 0
 Mode � 0 ; stop counter

 end if
 end if
end if

 end if

(initially Digit1 = 0, Digit2 = 0, Digit3 = 0, Mode = 0)

See Task3 description for explanation of “Key_Pressed”.

Task2 Details

Task2 performs time-division multiplexing by alternating the digit being displayed every
1/200 sec. This results in an overall 100 Hz refresh rate for both digits. Memory byte
“Digit_Select” is an indicator of what digit (left or right) is currently being displayed.

Task2 pseudocode:
(executed every 0.005 sec)

if (Digit_Select = 0)
 Digit_Select � 1 ; activate left 7-seg. display
 PA6 � 1
 PA5 � 0
 Digit � Digit3 ; display tens of sec value
else
 Digit_Select � 0 ; activate right 7-seg. display
 PA6 � 0
 PA5 � 1
 Digit � Digit2 ; display sec value
end if

Then, output 7-segment data corresponding to memory value Digit
just as it was done in Experiments 4 and 5.

(initially Digit_Select = 0, Digit = 0, PA6 = 0, PA5 = 1)

Task3 Details

Task3 executes every 1/20 sec; it checks if any key is pressed and responds accordingly.
Memory byte “Key_Pressed” keeps track of the keypad status: Key_Pressed = 1 when a
keypress is detected, Key_Pressed = 0 when no keys are pressed.

To freeze the count, one must press any key in the first three columns of the keypad (A,
B, C, D keys are inactive). To start the countdown sequence one must press and release
either E or F when the count is frozen. To enter a new starting time value one must press
numeric keys when the count is frozen.

Task3 pseudocode:
(executed every 0.05 sec)

 if (any key is pressed)

if (Key_Pressed = 0)
 Key_Pressed � 1
 if (Mode = 1) ; if now counting then

 Mode � 0 ; stop counting
 else
 if (E or F is pressed)
 Mode � 1 ; start/resume counting
 else
 Digit3 � Digit2, Digit1 � 0
 ; initialize count by shifting in digits from the right
 if (0 is pressed)
 Digit2 � 0
 elseif (1 is pressed)
 Digit2 � 1
 elseif (2 is pressed)
 Digit2 � 2
 � � �
 elseif (9 is pressed)
 Digit2 � 9
 end if
 end if
 end if
 end if
 else
 Key_Pressed � 0
 end if

(initially Key_Pressed = 0)

Because we are sharing I/O lines between keypad and display devices, some of the
bidirectional lines of PortD will periodically be configured for input (to read matrix
keypad data) and then configured for output (to output data to the displays). The
subroutine doing this on-the-fly reconfiguring is “Task3.”

To save you some programming time here is the code listing for subroutine Task3 (based
on the pseudocode shown previously):

;--

; Task 3 (executed every 1/20 sec) - Poll the matrix keypad:

Task3:
 BCLR PortA,X,$60 ; PA6,PA5 <-- 0 (turn off both displays)
 BCLR DDRD,X,$07 ; make PD2...PD0 inputs, to read keypad cols

 ; drive all keypad row lines high:
 BSET PortA,X,$80 ; PA7 <-- 1
 BSET PortD,X,$38 ; PD5...PD3 <-- 1

 ; read keypad column lines to detect if any key is pressed:
 BRCLR PortD,X,$07,C0 ; (checking if PD2...PD0 are all zero)
 JMP C1
C0: CLR Key_Pressed ; no key is now pressed
 JMP Quit_Task3

C1: LDAA #0 ; one of the keys is now pressed
 CMPA Key_Pressed
 BEQ C2
 JMP Quit_Task3 ; a key was pressed last time, so do
 ; nothing and wait for its release

C2: LDAA #1 ; a new keypress is detected
 STAA Key_Pressed
 LDAA #0
 CMPA Mode
 BEQ C3
 CLR Mode ; stop the countdown if running
 JMP Quit_Task3

C3: ; a new keypress is detected in paused mode

 ; check for key press in Row4 of the matrix keypad:
 BCLR PortA,X,$80 ; PA7 <-- 0 (Row1)
 BCLR PortD,X,$20 ; PD5 <-- 0 (Row2)
 BCLR PortD,X,$10 ; PD4 <-- 0 (Row3)
 BSET PortD,X,$08 ; PD3 <-- 1 (Row4)

 BRSET PortD,X,$01,C4 ; jump to C4 if E is pressed
 BRSET PortD,X,$02,C4 ; jump to C4 if F is pressed
 JMP C5

C4: ; E or F key is pressed, change mode to resume countdown:
 LDAA #1
 STAA Mode
 JMP Quit_Task3

C5: ; one of the numeric keys is pressed in paused mode; clear the
 ; tenths-of-sec digit and shift in the numeric key value from
 ; the right: (tens sec digit) <-- (sec digit) <-- (key value)

 CLR Digit1
 LDAA Digit2
 STAA Digit3

 ; detect key0 press (check in Row4 still in effect from above)
 BRCLR PortD,X,$04,C6
 LDAA #0
 STAA Digit2
 JMP Quit_Task3

C6: ; check for key press in Row1 of the matrix keypad:
 BSET PortA,X,$80 ; PA7 <-- 1 (Row1)
 BCLR PortD,X,$20 ; PD5 <-- 0 (Row2)
 BCLR PortD,X,$10 ; PD4 <-- 0 (Row3)
 BCLR PortD,X,$08 ; PD3 <-- 0 (Row4)

 ; detect key1 press:
 BRCLR PortD,X,$04,C7
 LDAA #1
 STAA Digit2
 JMP Quit_Task3

C7: ; detect key2 press:
 BRCLR PortD,X,$02,C8
 LDAA #2
 STAA Digit2
 JMP Quit_Task3

C8: ; detect key3 press:
 BRCLR PortD,X,$01,C9
 LDAA #3
 STAA Digit2
 JMP Quit_Task3

C9: ; check for key press in Row2 of the matrix keypad:
 BCLR PortA,X,$80 ; PA7 <-- 0 (Row1)
 BSET PortD,X,$20 ; PD5 <-- 1 (Row2)
 BCLR PortD,X,$10 ; PD4 <-- 0 (Row3)
 BCLR PortD,X,$08 ; PD3 <-- 0 (Row4)

 ; detect key4 press:
 BRCLR PortD,X,$04,C10
 LDAA #4
 STAA Digit2
 JMP Quit_Task3

C10: ; detect key5 press:
 BRCLR PortD,X,$02,C11
 LDAA #5
 STAA Digit2
 JMP Quit_Task3

C11: ; detect key6 press:
 BRCLR PortD,X,$01,C12
 LDAA #6
 STAA Digit2
 JMP Quit_Task3

C12: ; check for key press in Row3 of the matrix keypad:
 BCLR PortA,X,$80 ; PA7 <-- 0 (Row1)
 BCLR PortD,X,$20 ; PD5 <-- 0 (Row2)
 BSET PortD,X,$10 ; PD4 <-- 1 (Row3)
 BCLR PortD,X,$08 ; PD3 <-- 0 (Row4)

 ; detect key7 press:
 BRCLR PortD,X,$04,C13
 LDAA #7
 STAA Digit2
 JMP Quit_Task3

C13: ; detect key8 press:
 BRCLR PortD,X,$02,C14
 LDAA #8
 STAA Digit2
 JMP Quit_Task3

C14: ; detect key9 press:
 BRCLR PortD,X,$01,Quit_Task3
 LDAA #9
 STAA Digit2

Quit_Task3:

 BSET DDRD,X,$07 ; return PD2...PD0 to output mode

 ;Note: we had turned off both displays by clearing PA5 and PA6,
 ; but Task2 will refresh them in at most 1/200 sec so we need
 ; not do that here.

 ;increment TOC3 by 1/20 sec from its last value:

 LDD TOC3,X ; D <-- TOC3
 ADDD #Incr3 ; D <-- D + Incr3
 STD TOC3,X ; TOC3 <-- D
 LDAA #$20
 STAA TFLG1,X ; Clear the TCNT Output Compare 3 flag

 RTS

;--

You may copy and paste from an on-line listing of this subroutine that is found at:
http://www.ece.uic.edu/~goncharo/ece367_exp6_Task3.txt

Your job is to write the rest of the code needed to implement this kitchen timer, build the
circuit, and demonstrate its operation to your T.A.

There will be some flicker in the display. Can you explain why? How would you
suggest to eliminate it?

Why were two output lines dedicated to the common cathode terminals of the seven
segment displays, as compared to only one line in Experiment 5?

