MOTOROLA Orer e N1 280a/D
m SENMICOND UCTOR
APPLICATION NOTE

Using The Callable Routines In D-Bug12

By Gordon Doughman, Field Applications Engineer, Software Specialist

1 Introduction

All microcontrollers require some type of operating environment for the development and debugging of
user software. One of the least expensive environments that can be provided for the software developer
is a monitor/debugger program that executes in the target environment. Such a debugger, while provid-
ing an inexpensive environment for the controlled execution of developer software, does have some lim-
itations. Because the monitor/debugger program executes out of ROM in the target environment, target
resources are required for its execution. For this reason, the monitor does not provide true target system
emulation. A ROM monitor, however, does provide some significant advantages over other debug en-
vironments.

In most cases, software developers require a stable environment to test new algorithms or conduct per-
formance benchmarks. A ROM monitor can provide access to many internal utility routines that would
otherwise have to be written by the software developer. In addition, a ROM monitor can provide default
exception (interrupt) handlers that do not have to be written by the developer. These default exception
handlers can provide graceful recovery if the developer’s software inadvertently enables peripheral in-
terrupts without providing an exception handler.

This application note provides the details necessary to utilize the D-Bug12 user-callable utility functions.
Additionally, it shows how to substitute user interrupt service routines for D-Bug12’s default exception
handlers.

Note: The utility functions described in this application note are available in D-Bug12 version 1.x.x (for
the MC68HC812A4) and version 2.x.x (for the MC68HC912B32). The location and size of the pointer
table is different for the two versions. For version 1.x.x, the pointer table is located beginning at $FE00
and is 128 bytes long. For version 2.x.x, the pointer table is located beginning at $F680 and is only 64
bytes long. Addresses given in parentheses apply to D-Bug12 version 2.X.X.

2 User-Accessible Utility Routines

D-Bug12 currently provides access to eighteen different utility routines through an array of function
pointers (addresses) beginning at $FE00 ($F680). Placing the table at a fixed address, allows access
to the individual functions to remain constant even though the actual address of the routines may move
when changes are made to the monitor. The table is 128 (64) bytes long, extending to $FE7F ($F6FF),
allowing access to a maximum of 64 individual utility routines.

Because D-Bugl12 was written almost entirely in C, the utility routines are presented as C function def-
initions. However, this does not mean that the utility routines are usable only when programming in C.
They may easily be accessed when programming in assembly language as well. Table 1 summarizes
the available utility routines. A complete description of each utility routine is provided later in this appli-
cation note.

@ MOTOROLANER
© MOTOROLA INC., 1997

Table 1 Utility Routines Summary

Function Description Pointer Address
main() Start of D-Bug12 $FEOQO ($F680)
getchar() Get a character from SCI0 or SCI1 $FEO02 ($F682)
putchar() Send a character out SCIO0 or SCI1 $FE04 ($F684)
printf() Formatted Output — Translates binary values to characters $FEOQ6 ($F686)
GetCmdLine() | Obtain a line of input from the user $FEO08 ($F688)
sscanhex() Convert an ASCII hexadecimal string to a binary integer $FEOA ($F68A)
isxdigit() Checks for membership in the set [0...9, a...f, A...F] $FEOC ($F68C)
toupper() Converts lower case characters to upper case $FEOE ($F68E)
isalpha() Checks for membership in the set [a...z, A...Z] $FE10 ($F690)
strlen() Returns the length of a null terminated string $FE12 ($F692)
strepy() Copies a null terminated string $FE14 ($F694)
out2hex() Displays 8-bit number as two ASCII hex characters $FE16 ($F696)
out4hex() Displays 16-bit number as four ASCII hex characters $FE18 ($F698)
SetUserVector() | Set up user interrupt service routine $FE1A ($F69A)
WriteEEByte() | Write a data byte to on-chip EEPROM $FE1C ($F69C)
EraseEE() Bulk erase on-chip EEPROM $FE1E ($F69E)
ReadMem() Read data from the M6BHC12 memory map $FE20 ($F6A0)
WriteMem() Write data to the M68HC12 memory map $FE22 ($F6A2)

3 User-Accessible Function Calling Conventions

All of the user-accessible routines are written in C. In general, parameters are passed to the user-call-
able functions on the stack. Parameters must be pushed onto the stack in the reverse order they are
listed in the function declaration (right-to-left) except for the last parameter (the first parameter listed in
the C function declaration). The last parameter is passed to the function in accumulator D. Functions
having only a single parameter pass it in accumulator D. Note that char parameters must always be
converted to ani nt . This means that even if a parameter is declared as a char it will occupy two bytes
of stack space as a parameter. Note also that char parameters should occupy the low order byte (high-
er byte address) of a word pushed onto the stack or accumulator B if the parameter is passed in D.

Parameters pushed onto the stack before the function is called remain on the stack when the function
returns. It is the responsibility of the calling routine to remove passed parameters from the stack.

All 8- and 16-bit function results are returned in accumulator D. char values returned in accumulator D
are located in the 8-bit accumulator B. Bool ean function results are zero values for false and non-zero
values for true.

None of the CPU12 register contents, except the stack pointer, are preserved by the called functions.
If any of the register values need to be preserved, they should be pushed onto the stack before any of
the parameters and restored after deallocating the parameters.

4 Assembly Language Interface

Calling the functions from assembly language is a simple matter of pushing the parameters onto the
stack in the proper order and loading the first or only function parameter into accumulator D. The func-
tion can then be called with a JSR instruction. The code following the JSR instruction should remove
any parameters pushed onto the stack. If a single parameter was pushed onto the stack, a simple PULX
or PULY instruction is one of the most efficient ways to remove the parameter from the stack. If two or
more parameters are pushed onto the stack, the LEAS instruction is the most efficient way to remove
the parameters. Any of the CPU12 registers that were saved on the stack before the function parame-
ters should be restored with corresponding PUL instructions.

|
MOTOROLA AN1280a/D
2

An example of calling the Wi t eEEByt e() function is shown below.

Wi t eEEByt e: equ $FE1C ; $F69C for v2.x.X
| dab #$55 ; wite $55 to EEPROM
pshd ; place the data on the stack.
| dd EEAddr ess ; EEaddress to wite data.
jsr [WiteEEByte,pcr] ; Call the routine.
pul x ; remove the paraneter from stack.
beq EEVET r or ; zero return val ue means error.

The one part of the above example that requires an explanation is the addressing mode used by the
JSR instruction. This addressing mode is a form of indexed indirect addressing that uses the program
counter as an index register. The PCR mnemonic used in place of an index register name stands for
Program Counter Relative addressing. In reality, the CPU12 does not support PCR. Instead, the PCR
mnemonic is used to instruct the assembler to calculate an offset to the address specified by the label
Wit eEEByt e. The offset is calculated by subtracting the value of the PC at the address of the first
object code byte of the next instruction (in this case, PULX) from the address supplied in the indexed
offset field (Wi t eEEByt e). When the JSR instruction is executed, the opposite occurs. The CPU12
adds the value of the PC at the first object code byte of the next instruction to the offset embedded in
the instruction object code. The indirect addressing, indicated by the square brackets, specifies that the
address calculated as the sum of the index register (in this case the PC) and the 16-bit offset contains
a pointer to the destination of the JSR.

If the assembler being used does not support program counter relative indexed addressing, the follow-
ing two-instruction sequence can be used:

[dx Wit eEEByte ; load the address of WiteEEByte().
jsr 0, x ; Call the routine.

Listing 1 contains assembly language source macros that allow the routines to be easily called from as-
sembly language. The code was written for Motorola’s MCUasm macro assembler, however, only slight
modification should be required to use the macros with other assemblers. Conspicuously absent from
Listing 1 is a macro that supports the pri nt f () function. Because pri nt f () accepts a variable num-
ber of arguments, it is not possible to construct a macro to easily handle this situation with the Motorola
MCUasm macro syntax.

Parameters are passed to the macros in the order they are declared in the C functions, left to right. The
macros take care of passing the parameters to the functions in the proper order. When passing a pa-
rameter to a macro that represents the address of a constant or variable, the parameter must be pre-
ceded by the number or pound character (#). This tells the assembler to use the immediate addressing
mode to pass the address of the parameter rather than the contents of the address indicated by the
parameter. Listing 2 shows an example using the sscanhex macro.

4.1 Calling the User Accessible Routines from C

Because of the differences that may exist in the way various C compilers pass parameters, return func-
tion results, and deallocate local variables and parameters, accessing D-Bug12 user-callable functions
from C can be a bit more complicated than calling them from assembly language.

If the compiler being used for code development follows the same function-calling conventions as the
compiler used to develop D-Bug12, a minimum effort is required. The header file shown in Listing 3 may
be #i ncl uded with any source file that references D-Bug12 functions. The #def i nes at the end of

|
AN1280a/D MOTOROLA
3

the header file are incorporated to allow the use of the standard function library names within the pro-
gram text. Using the standard function library names will help ensure portability of the program text. In
addition, by using the C preprocessor to replace the standard function library names with names pre-
fixed by “DB12”, a program can use other functions contained in a standard function library without cre-
ating duplicate function conflicts in the linker. Listing 4 shows how D-Bugl2’s Get CndLi ne() and
printf () function are used in a simple program.

If the compiler being used for code development does not follow the D-Bug12 function calling conven-
tion, assembly language “glue code” will have to be written for each D-Bug12 user-accessible function.
The amount and complexity of the assembly language “glue code” will depend upon how closely the
compiler follows the D-Bug12 function calling convention.

If, for example, a compiler passes all of its parameters onto the stack rather than passing the function’s
first parameter in accumulator D, the assembly language “glue code” would first have to pull that pa-
rameter from the stack into accumulator D. It would then have to execute a JSR instruction to call the
D-Bug12 function. Listing 5 shows an example of calling the Wi t eEEByt e() function for a compiler
that allows M68HC12 assembly language to be inserted directly into the C source code. If a compiler
does not support this feature, the “glue code” will have to be assembled into an object file and combined
with the compiled C source code with the compiler’s linker.

4.2 User Interrupt Service Routines

As mentioned previously, one of the advantages of D-Bug12 is its ability to provide default exception
(interrupt) handlers. These default exception handlers can provide graceful recovery if software inad-
vertently enables peripheral interrupts. However, most developers will need to provide their own periph-
eral interrupt service handlers as part of the application development. The D-Bug12 Set User Vect or ()
function allows a software developer to substitute his own interrupt service routines for any D-Bug12
default exception handler.

D-Bugl2 accesses user interrupt service routines through a RAM-based interrupt vector table that mir-
rors CPU12 interrupt vectors which are located in EPROM from $FC00-$FFFF. When an enabled hard-
ware interrupt occurs, a small interrupt service dispatch routine located in the D-Bug12 EPROM checks
the corresponding entry in the RAM interrupt vector table. If the entry contains a value other than $0000,
itis used as the address of the user’s interrupt service routine. If the corresponding RAM interrupt vector
table entry contains an address of $0000, CPU control is returned to the D-Bug12 monitor where an
exception message and CPU register contents are displayed.

User interrupt service routines may consist of a number of CPU12 instructions but must end with the
RTI (return from interrupt) instruction. However, the maximum frequency at which interrupts occur will
be restricted to something slightly less than when the user’s code is run from EPROM because of the
small amount of code D-Bugl2 must execute to determine if a user interrupt service routine is to be
called. Before returning from the user’s interrupt service routine, the source of the interrupt must be
cleared by writing to the interrupting peripheral’s control registers. If the interrupt source is not cleared
before returning from the user’s service routine, the CPU12 will re-execute the same interrupt routine
immediately after returning. The processor will become “stuck” in the interrupt service routine.

Listing 6 shows an example of how to use D-Bug12’s Set User Vect or () function to provide an inter-
rupt service routine that services a timer interrupt.

5 Callable Routine Descriptions

The following paragraphs contain complete descriptions and usage notes for D-Bug12 user-callable
routines. In addition, the amount of stack space required by each routine and the routine’s pointer ad-
dress are also supplied.

]
MOTOROLA AN1280a/D
4

5.1 void main(void);

Poi nt er Address: $FEOO ($F680)
St ack Space: None

The first field in the table contains a pointer to the D-Bug12 mai n() function. This entry is provided for
two purposes. First, the reset vector does not point to mai n() but rather to code that is contained in the
file St art up. s. This file contains assembly language code that is required to initialize various hard-
ware modules of the MC68HC812A4 before proper execution of the monitor can occur. As the monitor
code is changed, the address of mai n() will change. Because the user may replace the supplied start-
up routines with his own startup code, he will have to examine the supplied D-Bug12 startup object code
to determine the address of mai n() .

Placing the address of the nai n() function at the first location in the user-callable routines table allows
user-supplied startup code to easily begin execution of the monitor with the simple instruction:

jmp [$f €00, pcr] ; address is $f680 for v2.x.Xx

In addition, the user may want to execute a program stored in EEPROM or other non-volatile memory
before entering the monitor. Again, for the same reasons listed above, providing the address of the
monitor’s mai n() function at a fixed address allows the location of nai n() to change without having
to change the user’s code.

Note: When executing a user program from power-up or reset that is stored in the on-chip EEPROM,
the user’s program should enter D-Bug12 through the startup code at the label “DEBUG12" rather than
through mai n() . The mai n() function does not perform any hardware initialization and does not clear
D-Bug12 variable memory.

When calling the mai n() function from a user program that began execution from D-Bug12, the user’s
program should first load the CPU12 stack pointer (SP) with the value “STACKTOP”, which may be ob-
tained from the file St ar t up. s.

Note: Reentering D-Bugl12 from a user program through the mai n() function reinitializes all D-Bug12
internal tables and variables. Any previously set breakpoints will be lost and any breakpoint SWI's will
remain in the user’s program.

5.2 int getchar(void);

Poi nt er Address: $FE02 ($F682)
St ack Space: 2 bytes

The get char () function provides the ability to retrieve a single character from the control terminal SCI.
If a character is not available in the SCI's receive data register when the function is called, the get -
char () will wait until one is received. Because the character is returned as an i nt , the 8-bit character
is placed in accumulator B.

5.3 int putchar(int);

Poi nt er Address: $FEO4 ($F684)
St ack Space: 4 bhytes

The put char () function provides the ability to send a single character to the control terminal SCI. If
the SCI's transmit data register is full when the function is called, put char () will wait until the transmit
data register is empty before sending the character. No buffering of characters is provided. put char ()
returns the character that was sent. However, it does not detect any error conditions that may occur in
the process and therefore will never return EOF. Because the character is returned as an i nt , the 8-bit
character is placed in accumulator B.

|
AN1280a/D MOTOROLA
5

5.4 int printf(char *format,...);

Poi nt er Address: $FEO6 ($F686)
St ack Space: M ni mum of 64 bytes, does not include paraneter
stack space.

The printf () function is used to convert, format, and print its arguments as standard output under
control of the format string pointed to by f or mat . It returns the number of characters that were sent to
standard output. The version of pri nt f () included as part of the monitor supports the formatted print-
ing of all data types except floating point numbers.

The format string can contain two basic types of objects: ASCII characters which are copied directly
from the format string to the display device, and conversion specifications that cause succeeding
printf() arguments to be converted, formatted, and sent to the display device. Each conversion
specification begins with a percent sign (%) and ends with a single conversion character. Optional for-
matting characters may appear between the percent sign and the conversion character in the following
order:

[-1[<FieldWdth>][.][<Precision>][h | 1]
These optional formatting characters are explained in Table 2.

Table 2 Optional Formatting Characters

Character Description

— (minus sign) | Left justifies the converted argument.

Fieldwidth Integer number that specifies the minimum field width for the converted
argument. The argument will be displayed in a field at least this wide.
The displayed argument will be padded on the left or right if necessary.

. (period) Separates the field width from the precision.

Precision Integer number that specifies the maximum number of characters to dis-
play from a string or the minimum number of digits for an integer.

h To have an integer displayed as a short.

| (letter ell) To have an integer displayed as a long.

The Fi el dW dt h or Pr eci si on field may contain an asterisk (*) character instead of a number. The
asterisk will cause the value of the next argument in the argument list to be used instead.

Table 3, shown below, contains the conversion characters supported by the pri nt f () function includ-
ed in D-Bug12. If the conversion character(s) following the percent sign are not one of the formatting
characters shown in Table 2 or the conversion characters shown in Table 3, the behavior of the
printf () function is undefined.

Table 3 printf() Conversion Characters

Character Argument Type; Displayed As
d,i int; signed decimal number
o] int; unsigned octal number (without a leading zero)

X int; unsigned hexadecimal number using abcdef for 10...15

X int; unsigned hexadecimal number using ABCDEF for 10...15
u int; unsigned decimal number
c

S

p

int; single character

char *; display from the string until a "\0’

void *; pointer (implementation-dependent representation)
% no argument is converted; print a %

|
MOTOROLA AN1280a/D
6

For those unfamiliar with C or the pri ntf () function, the following examples show the results pro-
duced by the pri nt f () function for several different format strings.

5.4.1 Example 1
printf(“Signed Decimal: %l Unsigned Decimal: %/n”, Num Num;
Where Numhas the value $FFFF

Displays the result:

Signed Decimal: -1 Unsigned Decinmal: 65535

5.4.2 Example 2
printf("“Hexadeci mal: %1 Hexadeci mal: %.4H n”, Num Num;
Where Numhas the value $FF

Displays the result:

Hexadeci mal : FF Hexadeci nal : OOFF

5.4.3 Example 3
printf(“This is a %/n”, TestStr);

Where Test St r is a pointerto (address of) the first byte of a null (zero) terminated character array con-
taining “ Test " .

Displays the result:

This is a Test

5.5 int GetCmdLine(char *CmdLineStr, int CmdLineLen);

Poi nt er Address: $FEO8 ($F688)
Stack Space: 11 bytes

The Get CndLi ne() function is used to obtain a line of input from the user. Get CndLi ne() accepts
input from the user a single character at a time by calling get char () . As each character is received it
is echoed back to the user terminal by calling put char () and placed in the character array pointed to
by CdLi neSt r . A maximum of CndLi neLen - 1 printable characters may be entered. Only printable
ASCII characters are accepted as input with the exception of the ASCII backspace character ($08) and
the ASCII carriage return character ($0D). All other non-printable ASCII characters are ignored by the
function.

The ASCII backspace character ($08) is used by the Get CndLi ne() function to delete the previously
received character from the command line buffer. When Get CndLi ne() receives the backspace char-
acter, it will echo the backspace to the terminal, print the ASCII space character, $20, and then send a
second backspace character to the terminal. This action will cause the previous character to be erased
from the screen of the terminal device. At the same time, the character is deleted from the command
line buffer. If a backspace character is received when there are no characters in CndLi neSt r, the
backspace character is ignored.

The reception of an ASCII carriage return character ($0D) terminates the reception of characters from
the user. The carriage return, however, is not placed in the command line buffer. Instead an ASCII NULL
character ($00) is placed in the next available buffer location.

Before returning, all the entered characters are converted to upper case. Get CrrdLi ne() always re-
turns an error code of noErr .

|
AN1280a/D MOTOROLA
7

5.6 char * sscanhex(char *HexStr, unsigned int *BinNum);
Poi nt er Address: $FEOA ($F68A)
Stack Space: 6 bytes
The sscanhex() function is used to convert an ASCII hexadecimal string to a binary integer. The
hexadecimal string pointed to by HexSt r may contain any number of ASCII hexadecimal characters.
However, the converted value must be no greater than $FFFF. The string must be terminated by either
an ASCII space ($20) or an ASCII NULL ($00) character.

The value returned by sscanhex() is either a pointer to the terminating character or a NULL pointer.
A NULL pointer indicates that either an invalid hexadecimal character was found in the string or that the
converted value of the ASCII hexadecimal string was greater than $FFFF.

5.7 int isxdigit(int c);
Poi nt er Address: $FEOC ($F68C)
St ack Space: 4 bytes
The i sxdi gi t () function tests the character passed in ¢ for membership in the character set [0...9,

a...f, A...F]. If the character c is part of this set, the function returns a non-zero (true) value; otherwise,
a value of zero is returned.

5.8 int toupper(int c);
Poi nt er Address: $FEOE ($F68E)
St ack Space: 4 bytes

If c is a lower-case character, [a...z], t oupper () will return the corresponding upper-case letter. If the
character is upper-case, it simply returns c.

5.9 int isalpha(int c);
Poi nt er Address: $FE10 ($F690)
St ack Space: 4 bytes

The i sal pha() function tests the character passed in ¢ for membership in the character set [a...z,
A...Z]. If the character c is part of this set, the function returns a non-zero (true) value; otherwise, a value
of zero is returned.

5.10 unsigned int strlen(const char *cs);
Poi nt er Address: $FE12 ($F692)
St ack Space: 4 bytes

The strl en() function returns the length of the string pointed to by cs. A string is an array of charac-
ters that is terminated by a’ \ O’ character.

5.11 char * strcpy(char *s1, char *s2);
Poi nt er Address: $FE14 ($F694)
St ack Space: 8 bytes

The st rcpy() function copies the contents of string s2 into the string pointed to by s1 including the
"\ 0’ . A pointer to s1 is returned.

5.12 void out2hex(unsigned int num);

Poi nt er Address: $FE16 ($F696)
St ack Space: 70 bytes

The out 2hex() function displays the lower byte of numon the control terminal as two hexadecimal
characters. The upper byte of numis ignored. This function is provided for those that may not know how
to use the pri nt f () function. out 2hex() simply calls pri nt f () with a format string of “92. 2X".

|
MOTOROLA AN1280a/D
8

5.13 void out4hex(unsigned int num);

Poi nt er Address: $FE18 ($F698)
Stack Space: 70 bytes

out 4hex() displays num on the control terminal as four hexadecimal characters. This function is pro-
vided for those that may not know how to use the printf () function. out 4hex() simply calls
printf () with aformat string of “ %. 4X" .

5.14 int SetUserVector(int VectNum, Address UserAddress);

Poi nt er Address: $FELA ($F69A)
St ack Space: 8 bytes

The function Set User Vect or () allows the user to substitute his own interrupt service routines for the
default interrupt service routines provided by D-Bugl12. Providing access to the RAM interrupt vector
table only through this routine provides flexibility for future implementations of interrupt handling in D-
Bug12. In addition, the memory location of the table may be changed without having to change user
code. The address of the user’s interrupt service routine, passed in User Addr ess, should point to a
routine that ends with an M68HC12 RTI instruction.

The following enum t ypedef defines the valid constants for Vect Num If an invalid constant is passed
in Vect Num a value of —1 will be returned by Set User Vect or () ; otherwise a value of zero is returned.

Note: In early mask sets of the MC68HC812A4, the timer interrupts were incorrectly wired to the inter-
rupt logic block. This caused the timer interrupt vectors to appear in the memory map at an incorrect
address. To accommodate the changes made to fix the incorrect wiring of the timer interrupt logic, the
constants passed to the Set User Vect or () function in the Vect Numparameter were changed. The
constants shown below are to be used with D-Bug12 v1.0.4 and later and v2.0.0 and later. The con-
stants contained within the comments should be used with D-Bug12 v1.0.2.

typedef Address char *;

t ypedef Byte unsigned char;

typedef enum Vect { UserPort HKWJ = 7,

User Port JKWJ = 8,

User AtoD = 9,

UserSClI 1 = 10,

UserSCI0 = 11,

UserSPIO0 = 12,

User Ti ner Ch0 = 23, /* UserTinerCh0 = 13 */
User Ti rerChl = 22, /* UserTinerChl = 14 */
User Ti nrerCh2 = 21, /* UserTinerCh2 = 15 */
User Ti mer Ch3 = 20, /* UserTimerCh3 = 16 */
User Ti mer Ch4 = 19, /* UserTimerCh4 = 17 */
User Ti ner Chs = 18, /* UserTinerChs = 18 */
User Ti nerChe = 17, /* UserTinerChé = 19 */
User Ti ner Ch7 = 16, /* UserTinerCh7 = 20 */
User PAccOvf = 14, /* User PAccOvf = 21 */
User PAccEdge = 13, /* User PAccEdge = 22 */
User Ti mer Ovf = 15, /* UserTi mer Ovf = 23 */
User RTI = 24,

User | RQ = 25,

User XI RQ = 26,

User SW = 27,

User Trap = 28,
RAMVect Addr = -1 };

Once set, all of the addresses of the user’s interrupt service routines will remain in the RAM vector table

until D-Bug12 is restarted by a hardware reset. Alternately, individual interrupt service routine address-
es may be removed by passing a null pointer in the User Addr ess parameter.

|
AN1280a/D MOTOROLA
9

Passing the constant '/RAMVect Addr’ in the Vect Num parameter will return the base address of the
RAM interrupt vector table instead of an error code. This will allow the user to make numerous changes
to the RAM vector table without having to call the Set User Vect or () function for each interrupt vector
change. When accessing the RAM vector table by using the base address, the Vect enumerated con-
stants must be multiplied by two before being used as an offset into the RAM vector table.

Note: Care should be used when allowing addresses of user interrupt service routines to remain in the
RAM vector table. If the addresses of interrupt service routines change during program development,
the D-Bug12 interrupt handler will most probably jump to an incorrect program address resulting in loss
of CPU/monitor control.

5.15 Boolean Wi t eEEByt e (Address EEAddr ess, Byte EEDat a);

Poi nt er Address: $FELC ($F69C)
St ack Space: 12 bytes

The Wit eEEByt e() function provides a mechanism to program individual bytes of the on-chip EE-
PROM without having to manipulate the EEPROM programming control registers. Wi t eEEByt e()
does not perform any range checking on EEAddr ess to ensure that it falls within the address range of
the on-chip EEPROM. A user program can determine the start address and size of the on-chip EE-
PROM array by examining the data contained in the custom data area fields Cust Dat a. EEBase and
Cust Dat a. EESi ze.

A byte erase operation is performed before the programming operation and a verify is performed after
the programming operation. If the EEPROM data does not match EEDat a, a false (zero value) is re-
turned by the function.

5.16 i nt EraseEE(void);

Poi nt er Address: $FEL1E ($F69E)
St ack Space: 4 bytes

The EraseEE() functi on provides a mechanism to bulk erase the on-chip EEPROM without having
to manipulate the EEPROM programming control registers. After the bulk erase operation is performed,
the memory range described by Cust Dat a. EEBase and Cust Dat a. EESi ze is checked for erasure.
If any of the bytes does not contain Oxf f , a non-zero error code is returned.

5.17int ReadMem(Address St art Addr ess, Byte * MenDat aP, unsi gned i nt NunByt es);

Poi nt er Address: $FE20 ($F6A0)
St ack Space: 10 bytes

The ReadMen() function is used internally by D-Bug12 for all memory read accesses. For this imple-
mentation of the monitor, the ReadMent() function simply reads NunByt es of data directly from the tar-
get memory and places it in a buffer pointed to by MenDat aP. A user-implemented command would
probably not benefit from the use of this function. Instead, it could read values directly from memory. A
non-zero error code is returned if a problem occurs while reading target memory.

5.18int WiteMem(Address St art Addr ess, Byte * MenDat aP, unsi gned i nt NunByt es);

Poi nt er Address: $FE22 ($F6A2)
St ack Space: 22 bytes

The Wit eMerm() function is used internally by D-Bug12 for all memory write accesses. Wit eMen()
is different from ReadMen() in that it is aware of the on-chip EEPROM memory. If a byte is written to
the memory range described by Cust Dat a. EEBase and Cust Dat a. EESi ze, Wi t eMen() calls the
Wit eEEByt e() function to program the data into the on-chip EEPROM memory. A non-zero error
code is returned if a problem occurs while writing target memory.

|
MOTOROLA AN1280a/D
10

6 Program Listings

6.1 Listing 1 — Assembly Language Source Macros Allowing Routines to be Easily Called from
Assembly language

The | abel "Version" should be set to the D-Bugl2 version nunber that is being used.

; For exanple, if the D-Bugl2 version nunber is 1.0.4, Version should be set to 104.

Ver si on: equ 104

,

if Version=102

constants used with the SetUserVector() function to set the address of user supplied
; interrupt service routines. These constants are only for use with D-Bugl2 version 1.0.2.

User Por t HKWU: equ 7 ; PortH key wake-up user interrupt

User Port JKWJ: equ 8 ; PortJ key wake-up user interrupt

User At oDx equ 9 ; A-to-D user interrupt

User SCI 1: equ 10 ; SCI #1 user interrupt (not available in the MO68HC912B32)
User SCI 0: equ 11 ; SCI #0 user interrupt

User SPI 0: equ 12 ; SPI #0 user interrupt

User Ti mer Ch0: equ 13 ; Tinmer Channel #0 user interrupt

User Ti ner Chl: equ 14 ; Tinmer Channel #1 user interrupt

User Ti ner Ch2: equ 15 ; Tinmer Channel #2 user interrupt

User Ti mer Ch3: equ 16 ; Tinmer Channel #3 user interrupt

User Ti mer Ch4: equ 17 ; Tiner Channel #4 user interrupt

User Ti mer Ch5: equ 18 ; Tinmer Channel #5 user interrupt

User Ti mer Ch6: equ 19 ; Tinmer Channel #6 user interrupt

User Ti ner Ch7: equ 20 ; Tinmer Channel #7 user interrupt

User PAccOvf: equ 21 ; Pul se Accunul ator Overfl ow user interrupt
User PAccEdge: equ 22 ; Pul se Accunul ator Edge user interrupt
User Ti mer Ovf: equ 23 Ti mer counter overfl ow user interrupt

User RTI : equ 24 Real Time Interrupt user interrupt

User | RQ equ 25 CPU Maskabl e Interrupt request user interrupt

User XI RQ equ 26 CPU Non- naskabl e I nterrupt request user interrupt

User SW : equ 27 ; Software Interrupt user interrupt

User Tr ap: equ 28 ; Instruction Trap user interrupt

RAWect Addr: equ -1 ; returns the base address of the RAMinterrupt vector table.
el se

; constants used with the SetUserVector() function to set the address of user supplied
; interrupt service routines. These constants are for use with D-Bugl2 version 1.0.4 and |later
; or version 2.0.0 and |l ater.

User Por t HKWU: equ 7 ; PortH key wake-up user interrupt

User Port JKWJ: equ 8 ; PortJ key wake-up user interrupt

User At oDx equ 9 ; A-to-D user interrupt

User SCI 1: equ 10 ; SCI #1 user interrupt (not available in the MO68HC912B32)
User SCI 0: equ 11 ; SCI #0 user interrupt

User PAccEdge: equ 13 Pul se Accunul at or Edge user interrupt

User SPI 0: equ 12 SPl #0 user interrupt
User PAccOvf: equ 14 Pul se Accunul ator Overflow user interrupt

User Ti ner Ovf: equ 15 ; Tinmer counter overflow user interrupt
User Ti mer Ch7: equ 16 ; Tinmer Channel #7 user interrupt
User Ti mer Ch6: equ 17 ; Tiner Channel #6 user interrupt
User Ti mer Ch5: equ 18 ; Tinmer Channel #5 user interrupt
User Ti ner Ch4: equ 19 ; Tinmer Channel #4 user interrupt
User Ti ner Ch3: equ 20 ; Tinmer Channel #3 user interrupt
User Ti ner Ch2: equ 21 ; Tinmer Channel #2 user interrupt
User Ti mer Chl: equ 22 ; Tinmer Channel #1 user interrupt
User Ti mer Ch0: equ 23 ; Tinmer Channel #0 user interrupt

User RTI : equ 24 Real Time Interrupt user interrupt

User | RQ equ 25 CPU Maskabl e I nterrupt request user interrupt

User XI RQ equ 26 CPU Non- naskabl e I nterrupt request user interrupt

User SW : equ 27 ; Software Interrupt user interrupt

User Tr ap: equ 28 ; Instruction Trap user interrupt

RAWect Addr: equ -1 ; returns the base address of the RAMinterrupt vector table.
endi f

,

if Version<200; if we're assenbling for version 1.x.X

Tabl eBase: equ $fe00 : the address table is |ocated at $fe00
el se
Tabl eBase: qulffﬁso ; for version 2.x.x the table is located at $f680
endi
nai n: equ Tabl eBase+$00
get char: equ Tabl eBase+$02
put char: equ Tabl eBase+$04
printf: equ Tabl eBase+$06
Get CndLi ne: equ Tabl eBase+$08
sscanhex: equ Tabl eBase+$0a
isxdigit: equ Tabl eBase+$0c
t oupper: equ Tabl eBase+$0e
i sal pha: equ Tabl eBase+$10
strlen: equ Tabl eBase+$12

|
AN1280a/D MOTOROLA
11

strcpy: equ Tabl eBase+$14
out 2hex: equ Tabl eBase+$16
] out 4hex: equ Tabl eBase+$18
j Set UsrVect: equ Tabl eBase+$la
j WiteEEByte: equ Tabl eBase+$1lc
] Er aseEE: equ Tabl eBase+$le
ReadMem equ Tabl eBase+$20
WiteMem equ Tabl eBase+$22

i
J
I
!
C function: void main(void);

mai n: macr o
jmp [jmain, per] ; start D-Bugl2 from main().
endm

C function: int getchar(void);

’getchar: nmacr o
jsr [jgetchar,pcr]; call D-Bugl2's getchar routine. return the character in the B-accunul ator.
endm

C function: int putchar(int);

put char: macr o

| dab\ 1 ; load the character to send into the B-accunul ator.
jsr [jputchar,pcr]; call D Bugl2's getchar routine. sent character is returned in B-accunul ator.
endm

C function: int GetCndLi ne(char *CndLineStr, int CndLi neLen);
Get CmdLi ne: macro

ldd \2 ; load the length of the command |ine character buffer.
pshd ; place it on the stack.

ldd \1 ; get a pointer to the character buffer

jsr [jGetCmdLine, pcr]; go get characters fromthe user.

pul x ; renove the command line Iength paraneter fromthe stack.
endm

,

; C function: char * sscanhex(char *HexStr, unsigned int *BinNun);

sscanhex: macro

ldd \2 ; get a pointer to a word | ocation where the conversion result will be placed
pshd ; place it on the stack.
ldd \1 ; get a pointer to the ASCII hex string to convert.

jsr [jsscanhex, pcr]; go convert ASCI| hex string to binary
; 1-byte inst. to renove the pointer to the conversion result fromthe stack.
C function: int isxdigit(int c);
sxdigit: nmacr o
| dab\ 1 ; load ASCI| character into the B-accunul ator.
jsr [jisxdigit,pcr]; go check for menbership in the character set 0..9, A .F, a..f.
endm
C function: int toupper(int c);

t oupper : macr o

| dab\ 1 ; load ASCI| character into the B-accunul ator.
jsr [jtoupper,pcr]; convert the character to upper case if the character is in the set a..z.
endm

; C function: int isalpha(int c);

i sal pha: macr o

| dab\ 1 ; load ASCI| character into the B-accunul ator.
jsr [jisalpha,pcr]; go check for menbership in the character set A .Z a..z.
endm

C function: unsigned int strlen(const char *cs);

strlen: macr o

ldd \1 ; get a pointer to the null ('\0") term nated character array.
jsr [jstrlen,pcr] ; go count the nunber of characters in the string.
endm

C function: char * strcpy(char *sl1, char *s2);

strepy: macr o

ldd \2 ; get pointer to source string (s2) onto the stack.

pshd ; place it on the stack.

ldd \1 ; get pointer to destination string (sl)

jsr [jstrcpy, per] ; go copy the string.

pul x ; one byte instruction to renpve the source string pointer (s2)
; fromthe stack.

endm

C function: void out2hex(unsigned int num;

out 2hex: macr o

| dab\ 1 ; get the 8-bit byte to display as ASCI | hex.

|
MOTOROLA AN1280a/D
12

jsr [jout2hex,pcr]; go display the byte.
endm

; C function: void out4hex(unsigned int num;

out 4hex: nmacr o
ldd \1 ; get the 16-bit word to display as ASCI| hex.
jsr [jout4dhex,pcr]; go display the word.
endm

’

; C function: int SetUserVector (int VectNum Address User Address);

Set User Vect or : macr o
| dd

\2 ; get the address of the users interrupt service routine.
pshd ; place it on the stack.
ldd \1 ; get the interrupt vector to set.
jsr [jSetUsrVect,pcr]; go set the user's interrupt vector.
pul x ; one byte instruction to renpve the address of the users

; interrupt service routine fromthe stack.
endm

; C function: Bool ean WiteEEByte(Address EEAddress, Byte EEData);

Wit eEEByte: macro

| dab\ 2 ; get the data byte to place in EEPROM nenory.

pshd ; place it on the stack.

ldd \1 ; get the EEPROM byte address.

jsr [JWiteEEByte, pcr]; go programthe EEPROM byte.

pul x ; one byte instruction to renpve the EEPROM data fromthe stack.
endm

C function: int EraseEE(void);

Er aseEE: macr o

jsr [jEraseEE, pcr]; go bulk erase the EEPROM

endm

C function: int ReadMem (Address StartAddress, Byte *MenDataP, unsigned int NunBytes);

ReadMem macr o

ldd \3 ; get the nunber of bytes to read.

pshd ; place it on the stack.

Idd \2 ; get a pointer to a buffer in which to place the menory contents.
pshd ; place it on the stack.

ldd \1 ; get the nenory address where we will start reading data.

jsr [] ReadNEm pcr]; go read data fromthe target nenory.

| eas4 ; renove the 2 paraneters placed on the stack.

endm

C function: int WiteMem (Address StartAddress, Byte *MenDataP, unsigned int NunBytes);

WiteMem macr o

ldd \3 ; get the nunber of bytes to wite.

pshd ; place it on the stack.

Idd \2 ; get a pointer to the data that will be placed in nmenory.

pshd ; place it on the stack.

ldd \1 get the menory address where we will start witing data to nmenory.

jsr [JWiteMempcr]; go wite our data into the target nenory.
| eas4, s ; renove the 2 paraneters placed on the stack.
endm

|
AN1280a/D MOTOROLA
13

6.2 Listing 2 — Example Using the sscanhex Macro

; This small program denmonstrates the use of several of the user callable functions
; contained in D-Bugl2. The routine perforns the follow ng functions:

Di splays a pronpt by calling printf()

Accepts an ASCI| hexadeci mal nunber typed by the user by calling GetCniLine()

Converts the entered nunmber to binary by calling sscanhex()

Di spl ays the entered hexadeci mal nunber as Signed Deci mal, Hexadeci mal, and Unsi gned deci mal nunber.
Returns to D-Bugl2 when a blank line is entered.

arwhE
NN

include “DB12Macs. Asnf

opt lis
Space equ $20 ; space character.
org $800
Buffer ds 20 ; character buffer for user input
BufferP ds 2 ; pointer into the character buffer.
Bi nNum ds 2 ; converted hex nunber.
org $7000
Test: | dd #Pronpt Str ; load a pointer to the pronpt string.
jsr [printf,pcr]; go print the pronpt.
Get CndLi ne#Buf f er, #20 ; now, go get an ASCI| hex nunber from the user.
| dx #Buf f er ; point to the start of the buffer.
Ski pSpcs: | daa 0, x ; get a character fromthe buffer.
cnpa #Space ; | eading space character?
bne DoneSki p ;. no, we're done.
i nx ; yes. point to the next character in the buffer.
bra Ski pSpcs ; go check for another space character.
DoneSki p: st x Buf ferP ; save a pointer to the first non-blank character in the buffer.
tst 0, x ; check to see if a blank line was entered.
beq Done ; return to D-Bugl2 if done.
sscanhex Buf f er P, #Bi nNunmj convert the nunber fromascii to binary.
cpd #0
bne PrtResul t
| dd #Error ; load a pointer to the error string.
jsr [printf,pcr]; go print the error nmessage.
bra Test
PrtResult: | dd Bi nNum ; get the value of the converted nunber.
pshd ; place three copies of the nunber on the stack. one for “%”
pshd ; one for “%d. 4X’
pshd ; one for “%l”
| dd #Resul t Str
jsr [printf,pcr]
| eas 6,s
bra Test
Done: swi
Pronpt Str: db $0d, $0a,"Enter a Hex nunber: “,0
Error: db $0d, $0a,”Invalid hexadeci mal nunmber entered.”, $0d, $0a, 0
Resul t Str: db $0d, $0a, $0d, $0a,”Signed Deci mal = %", $0d, $0a, "Hexadeci mal = %t. 4X", $0d, $0a, " Unsi gned dec-

imal = %", $0d, $0a,0

|
MOTOROLA AN1280a/D
14

6.3 Listing 3 — Header File that May be #i ncl uded with Any Source File that References
D-Bugl12 Functions

/* This file nmay be #included with any C source file that uses the D Bugl2 */
/* user callable routines. It provides a sinple, portable way to access the */
/* routines fromC w thout having to use any assenbly |anguage “glue code” */

/* sone typedefs used by D-Bugl2 */

typedef char * Address;

typedef int Bool ean;

typedef unsigned char Byte;

/*
The synmbol “Version” should be set to the D Bugl2 version nunber that is being used.
For exanple, if the D Bugl2 version nunber is 1.0.4, Version should be set to 104.

*/

#define Version 104

#if Version == 102

typedef enum Vect { UserPort HKWJ = 7,
User Port JKMWU = 8,
User At oD = 9,
UsersSCl 1 = 10,
UserSCI0 = 11,
UserSPI0 = 12,
User Ti mer Ch0 = 13,
User Ti ner Chl = 14,
User Ti mer Ch2 = 15,
User Ti mer Ch3 = 16,
User Ti ner Ch4 = 17,
User Ti mer Chs = 18,
User Ti mer Ch6 = 19,
User Ti ner Ch7 = 20,

User PAccOvf = 21,
User PAccEdge = 22,
User Ti ner Ovf = 23,
User RTI = 24,

User| RQ = 25,

User XI RQ = 26,

User SW = 27,
UserTrap = 28,
RAMVect Addr = -1 };

#el se

typedef enum Vect { UserPort HKWJ = 7,
User Port JKWU = 8,
User AtoD = 9,
UserSCI 1 = 10,
UserSCI0 = 11,

User SPI0 = 12,
User PAccEdge = 13,
User PAccOvf = 14,

User Ti ner Ovf = 15,
User Ti mer Ch7 = 16,
User Ti nerChé = 17,
User Ti ner Ch5 = 18,
User Ti mer Ch4 = 19,
User Ti mer Ch3 = 20,
User Ti ner Ch2 = 21,
User Ti mer Chl = 22,
User Ti mer Ch0 = 23,
User RTI = 24,
User | RQ = 25,
User XI RQ = 26,
User SW = 27,

UserTrap = 28,
RAMVect Addr = -1 };

#endi f

/* structure that defines the functions in D Bugl2's user accessible */

/* function table. Also provides a function prototype for each function */
/* Documentation for each of these functions can be found in Application */
/* Note AN-xxxx text */

typedef struct {
voi d (*DB12mai n) (void);
int (*DBl2getchar)(void);
int (*DBl2putchar)(int);

|
AN1280a/D MOTOROLA
15

int (*DBl2printf)(const char *,...);

int (*GetCndLine)(char *CndLineStr, int CndLi neLen);

char * (*sscanhex)(char *HexStr, unsigned int *BinNun);

int (*DBl2isxdigit)(int c);

int (*DB1l2toupper)(int c);

int (*DB12isal pha)(int c);

unsi gned int (*DB12strlen)(const char *cs);

char * (*DBl2strcpy)(char *sl1, char *s2);

voi d (*out2hex) (unsigned int num;

voi d (*out4hex) (unsigned int num;

int (*SetUserVector)(int VectNum Address User Address);

Bool ean (*W it eEEByt e) (Addr ess EEAddress, Byte EEData);

int (*EraseEE)(void);

int (*ReadMem) (Address StartAddress, Byte *MenDataP, unsigned int NunBytes);
int (*WiteMen) (Address StartAddress, Byte *MenDataP, unsigned int NunBytes);

} UserFN, * UserFNP;
/* defines a pointer to the start of D-Bugl2's user accessible functable */
#if Version < 200
#define MyUser FNP ((User FNP) Oxf e00)/* in D-Bugl2 version 1.x.x the user accessible table begins at $fe00 */
#el se
#define MyUser FNP ((User FNP) Oxf 680)/* in D-Bugl2 version 2.x.x the user accessible table begins at $f680 */
#endi f

/* The follow ng #defines are used to provide for portability and avoid a |inker */
/* conflict with the standard library functions of the sane nane. No #define is */
/* included for DBl2nmin() since all C progranms nust contain a nmain() function */

#define printf DBl2printf
#def i ne getchar DBl2getchar
#def i ne putchar DBl12putchar
#define isxdigit DB12isxdigit
#def i ne toupper DB12t oupper
#def i ne i sal pha DB12i sal pha
#define strlen DBl2strlen
#define strcpy DBl2strcpy

|
MOTOROLA AN1280a/D
16

6.4 Listing 4 — Example of Get CrdLi ne() and printf () Functions
#i ncl ude “DBugl2. h”
T Y
voi d nai n(void)
{
[* Variable Declarations */
char CmdLi ne[40]; /* used to hold the conmand line string */
/* Begin Function main() */
do
DBug12FNP->printf(“\n\r>");/* display a pronpt */
DBug12FNP- >Get CndLi ne(CndLi ne, 40);/* get a line of input fromthe user */
DBug12FNP->printf(“\n\r”);/* go to the next line on the screen */
DBug12FNP- >printf (CndLine);/* echo the line back to the user */
whil e (*CndLi ne! = 0) /* continue until a blank Iine is entered */
} /* end main */

JRHE KKK KKk kA KKk ok kA Kk ok h kK Kk ok kKK k kAR KK kKA K K I AR K IR KKk Ak k kA kkh kA Kk kkhkkk kA k Kk k ok ok x [

AN1280a/D MOTOROLA
17

6.5 Listing 5 — Example Calling the Wi t eEEByt e() Function for a Compiler that Allows
M68HC12 Assembly Language to be Inserted Directly into the C Source Code

/* C source file showing the necessary M68HC1l2 assenbly | anguage “glue code” */

/* for a C conpiler that passes ALL function paraneters on the stack. The D-Bugl2 callable */
/* functions expect the first function paranmeter to be passed in the D-accumul ator */

/* This exanple uses the ability of this particular C conpiler to insert assenbly |anguage */
/* source statenents directly into the C source */

/*
The synbol “Version” should be set to the D-Bugl2 version nunber that is being used.
For exanple, if the D-Bugl2 version nunber is 1.0.4, Version should be set to 104.
*/

#define Version 104

#i f Version < 200

#def i ne Tabl eBase Oxfe00
#el se

#defi ne Tabl eBase Oxf 680
#endi f

#def i ne mai nAddr Tabl eBase + 0x00

#defi ne getchar Addr Tabl eBase + 0x02
#def i ne putchar Addr Tabl eBase + 0x04
#define printfAddr Tabl eBase + 0x06
#defi ne Get CndLi neAddr Tabl eBase + 0x08
#def i ne sscanhexAddr Tabl eBase + 0x0a
#def i ne isxdigi t Addr Tabl eBase + 0xOc
#defi ne toupper Addr Tabl eBase + 0x0Oe
#def i ne i sal phaAddr Tabl eBase + 0x10
#define strlenAddr Tabl eBase + 0x12
#define strcpyAddr Tabl eBase + 0x14
#def i ne out 2hexAddr Tabl eBase + 0x16
#def i ne out4hexAddr Tabl eBase + 0x18
#defi ne Set User Vect or Addr Tabl eBase + Oxla
#define WiteEEByt eAddr Tabl eBase + Oxlc
#def i ne EraseEEAddr Tabl eBase + Oxle
#defi ne ReadMemAddr Tabl eBase + 0x20
#define WiteMemAddr Tabl eBase + 0x22

/* The followi ng #defines are used to provide for portability and avoid a |inker */
/* conflict with the standard library functions of the sane nane. No #define is */
/* included for DBl2mai n() since all programs nust contain a main() function */

#define printf DBl2printf
#def i ne getchar DBl2getchar
#defi ne putchar DB12put char
#define isxdigit DB12isxdigit
#def i ne toupper DB12t oupper
#defi ne isal pha DB12i sal pha
#define strlen DBl2strlen
#define strcpy DBl2strcpy

/~k**/
i ,
Bool ean Wit eEEByt e(Address EEAddress, Byte EEData

{

/* Variable Declarations */

/* Begin Function WiteEEByte() */

asn(“pul d”); /* pull the ' EEAddress' paraneter fromthe stack */
asm(“jsr [WiteEEByteAddr,pcr]”);/* call D Bugl2's WiteEEByte function */

} /* end WiteEEByte */

[RA R KAk Rk Kk k Kk kA kK Kk Kk KKK Ak KKK IR KA K KKK KK AR KKK KKK IR KA KKK KRR AR R Ak AR Rk IRk kA Kk kx|

|
MOTOROLA AN1280a/D
18

6.6 Listing 6 — Example of the D-Bug12 Set User Vect or () Function to Provide an
Interrupt Service Routine that Services a Timer Interrupt

include “DB12Macs. Asnf

opt lis
RegBase: equ $0000
Tl Cs: equ RegBase+$80 ; input capture/output conpare select.
CFORC: equ RegBase+$81 ; force output conpare register
OC7M equ RegBase+$82 ; Qutput conpare 7 mask register.
OC7D: equ RegBase+$83 ; CQutput conpare 7 data register.
TCNT: equ RegBase+$84 ; 16-bit tinmer/counter register.
TSCR: equ RegBase+$86 ; timer systemcontrol register.
TQCR: equ RegBase+$87 ; Timer Queue control register.
TCTL1: equ RegBase+$88 ; Timer control register 1.
TCTL2: equ RegBase+$89 ; Tinmer control register 2.
TCTL3: equ RegBase+$8a ; Timer control register 3.
TCTLA4: equ RegBase+$8b ; Timer control register 4.
TMBK1: equ RegBase+$8c ; Main timer interrupt nask register.
TMSK2: equ RegBase+$8d ; M scellaneous tinmer interrupt mask register.
TFLGL: equ RegBase+$8e ; Main timer interrupt flag register.
TFL&2: equ RegBase+$8f ; Main Mscellaneous tinmer interrupt flag register.
TCO: equ RegBase+$90 ; Timer input capture/output compare O.
TC1: equ RegBase+$92 ; Timer input capture/output conpare 1.
TC2: equ RegBase+$94 ; Tinmer input capture/output conpare 2.
TC3: equ RegBase+$96 ; Timer input capture/output compare 3.
TCA: equ RegBase+$98 ; Timer input capture/output conpare 4.
TC5: equ RegBase+$9a ; Tinmer input capture/output conpare 5.
TC6: equ RegBase+$9c ; Timer input capture/output compare 6.
TC7: equ RegBase+$9e ; Timer input capture/output conpare 7.
PACTL: equ RegBase+%$a0 ; Pul se accunul ator control register.
PAFLG equ RegBase+$al ; Pul se accunul ator flag register.
PACNT: equ RegBase+$a2 ; 16-bit pul se accurul ator count register.
TIMIST: equ RegBase+$ad ; Tiner test register.
PORTT: equ RegBase+$ae ; Timer port data register.
PORTTD: equ RegBase+$af ; Timer port data direction register.
org $7000
Set User Vect or #User Ti mer ChO, #Ch0lI nt; set the user timer ChO interrupt vector.
| daa #$03 ; set the tiner prescaler to /8
staa TMBK2
| daa #3$01
staa TI CS ; set tiner ChO as an output conpare.
staa PORTTD ; set the associated OO0 pin to an output.
staa TMSK1 ; enable OC0 interrupts.
staa TCTL2 ; set OO0 to toggle on output conpares.
| dd #5000
std TCO ; set up for a 10 nS period (5 nS each half cycle).
| daa #$90
staa TSCR ; startup the tiner/counter system enable fast clear of interrupt flags.
cli ; enable interrupts.
bra * ; just loop here. the interrupt routine does all the work.

; This timer interrupt routine generates a square wave on port pin PTO
; usi ng the output conpare function of timer channel #O0.

bhOI nt: equ *

| dd TCO ; get the value of the O register.

addd #5000 ; add the half period to it.

std TCO ; update the OC0 register autonatically clearing the interrupt flag.
rti

|
AN1280a/D MOTOROLA
19

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability
of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and
do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended
for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify
and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

MCUinit, MCUasm, MCUdebug, and RTEK are trademarks of Motorola, Inc. MOT OROL A and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;

P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140

Mfax™: RMFAXO@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,

6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

Mfav ic a tradamarl: nf Mntarnla In~

I @ MOTOROLA

AN1280A/D

