
Order this document
by AN2166/D
Semiconductor Products Sector
Application Note AN2166

Programming and Erasing FLASH and EEPROM Memories
on the MC68HC912DT128A/DG128A/D60A
By Darci Ernst, Adeela Gill, and Kazue Kikuchi

Transportation and Standard Products Group
Austin, Texas

Introduction

Motorola has released two new microcontrollers (MCU), the
MC68HC912DT128A (DT128A) and the MC68HC912DG128A
(DG128A), as new products in the M68HC12 Family of devices.

NOTE: The MC68HC912D60A is not referenced specifically in this application
note, but the memory technology and algorithms apply to this part as
well.

The DT128A and DG128A offer many features, including:

• 16-bit central processor unit (CPU)

• 128 Kbytes of FLASH memory

• FLASH boot code protection

• 2 Kbytes of EEPROM

• 8 Kbytes of on-chip RAM

This application note explains how to use the FLASH and EEPROM on
the MC68HC912DT128A/DG128A and provides example software for
program and erase operations. These algorithms are written in
M68HC12 assembly code.
© Motorola, Inc., 2001

TM

Application Note
This code is available for download from
http://www.motorola.com/semiconductor/ which is Motorola’s
Semiconductor Product Sector’s Web site.

The topics covered in this application note include:

• Reference Documents

• MC68HC912DT128A/DG128A vs. MC68HC912DG128

• FLASH Functional Description

• FLASH Memory Mapping

• FLASH Control Registers

• FLASH Erase Operation

• FLASH Program Operation

• EEPROM Functional Description

• EEPROM Control Registers

• EEPROM Block Protection

• Timebase Initialization and SHADOW Word

• EEPROM Erase Operation

• EEPROM Program Operation

• Selective Bit Programming

• Evaluating Delay Times for the Sample Code

• FLASH Frequently Asked Questions

• EEPROM Frequently Asked Questions

• Sample Code
 AN2166

2 MOTOROLA

Application Note
Reference Documents
Reference Documents

For complete information on the MC68HC912DT128A/DG128A devices,
the user should reference MC68HC912DT128A and
MC68HC912DG128A Technical Data, Motorola document number
MC68HC912DT128A/D.

For information on the MC68HC912D60A, the user should reference
MC68HC912D60A Technical Data, Motorola document number
MC68HC912D60A/D.

The memory cells used in the MC68HC912DT128A/DG128A devices
are split gate cells from Silicon Storage Technology (SST) in 0.5-micron
geometry. The SST Web site contains a detailed description of these
cells. Refer to http://www.ssti.com.

MC68HC912DT128A/DG128A vs. MC68HC912DG128

In general, the MC68HC912DT128A/DG128A devices discussed in this
application note are a technology shrink from the MC68HC912DG128
device.

In addition to the transistor size reduction, a few changes were made on
the devices. These include:

• Using a new FLASH and EEPROM technology

• A new FLASH programming algorithm. The new algorithm
programs on a per-row basis and is faster and simpler than before.

• Availability of a new, faster EEPROM programming algorithm.
This new algorithm automatically turns off erasing/programming
voltage when the operation is completed.

• Addition of an internal charge pump for the FLASH to supply
programming and erasing voltage. There is no need to provide a
high voltage supply on the VFP pin.

WARNING: Do not apply 12 volts to the VFP pin on the “A” Family devices. This
may damage the device! For safety, the user may connect this pin
to VSS or VDD.
 AN2166

MOTOROLA 3

Application Note
• Adding a required constant timebase source to the new EEPROM.
The timebase is the external clock input, EXTAL, divided by the
value programmed into the EEDIVH and EEDIVL registers.

The devices are compared in detail in Table 1 and Table 2.

Table 1. FLASH Comparison

MC68HC912DG128 MC68HC912DT128A/
DG128A

Type UDR (1.5T) UDR (SST)

FLASH control
register

ERAS is bit 2, LATCH control
is bit 1

ERAS is bit 1; bit 2 has no
function.

Programming
voltage

External programming and
erasing voltage VFP must
be provided

No external high voltage
needed; internal charge
pump

Algorithm
Multiple pulses using margin

read verification
One fixed pulse; erase and

programming times fixed

Bit-erased state “1” “1”

Programming
minimum size

1 byte 1 word (2 bytes)

Erasing minimum
size

bulk (32 Kbyte array) bulk (32 Kbyte array)

128 Kbytes
programming
time

Typical 8 s Minimum 2 s

Erase time
Minimum 100 ms for all sizes:

64 bytes, 512 bytes,
16 Kbytes, 32 Kbytes

Bulk erase: minimum 8 ms
 AN2166

4 MOTOROLA

Application Note
MC68HC912DT128A/DG128A vs. MC68HC912DG128
Table 2. EEPROM Comparison

MC68HC912DG128 MC68HC912DT128A/
DG128A

Minimum
programming
clock frequency

1.0 MHz 250 kHz

Bit-erased state “1” “1”

Algorithm Fixed delays

Two modes:
Standard mode: Can utilize

same routine as
MC68HC912DG128

AUTO mode: Program/erase
cycle is terminated by the
internal timer

Registers 4-byte block from $00F0

6 byte block from $00EE
EEDIVH = $00EE
EEDIVL = $00EF
All other registers same

Erase sizes
supported

1 byte, 1 word (2 bytes), 1 row
(32 bytes), bulk

1 byte, 1 word (2 bytes),
1 row (32 bytes), bulk

Program sizes
supported

1 byte or 1 word (2 bytes) 1 byte or 1 word (2 bytes)

Charge pump
clock

EERC controls clock source.
EERC = 0 = system clock;
EERC = 1 = internal RC
oscillator

Clock source is the oscillator
clock (EXTAL)

User specifies the divide ratio

SHADOW size
and location

1 byte at $0FC0
1 word (2 bytes) at

$0FC0–$0FC1

SHADOW
mapping

At reset, SHADOW byte is
loaded into EEMCR

At reset, SHADOW word is
loaded into EEMCR,
EEDIVH, and EEDIVL

SHADOW
disable bit

NOSHB, bit 6 in EEMCR NOSHW, bit 6 in EEMCR

Successive
programming

Successive programming is
allowed

Erase operation is required
before programming. The
same byte may be
successively programmed
only if selective bit
programming is used.

Programming
time

Minimum 10 ms

Standard mode: minimum
10 ms

AUTO mode: maximum
500 µs

Erasing time Minimum 10 ms
Standard mode: minimum

10 ms
Auto mode: maximum 10 ms
 AN2166

MOTOROLA 5

Application Note
FLASH Functional Description

The MC68HC912DT128A/DG128A devices contain 128 Kbytes of
FLASH memory. The memory is divided into four arrays of 32 Kbytes
each. Each array consists of windows, which are software selectable to
be one page (16 Kbytes) or two pages (32 Kbytes) each.

While the memory is subdivided into four arrays, there are restrictions on
how the arrays can be used to hold program/erase execution code. In
the 32-Kbyte window configuration, such code cannot be located in
FLASH. In the 16-Kbyte window configuration, code can be executed out
of FLASH to program/erase the other arrays. But, to do this, the code
must be in direct-addressable FLASH, $4000–$7FFF or $C000–$FFFF.
This code cannot program or erase addresses in either of those ranges.

An erased bit in the FLASH reads as a logic 1 and a programmed bit
reads as a logic 0. The algorithm programs one row, 32 words
(64 bytes), at a time. The erase operation will erase the entire active
FLASH array (32 Kbytes). See FLASH Memory Mapping for a
description of the FLASH window ranges.

Program and erase operations are facilitated through control bits in
memory-mapped registers. Details for these operations appear later in
this application note.

The FLASH memory module and associated registers on the
MC68HC912DT128A/DG128A are:

• In 16-K window configuration:
– $4000–$7FFF and $C000–$FFFF, direct accessible FLASH

space

– $8000–$BFFF, page-addressable FLASH space

NOTE: The ROMHM bit in the MISC register must be cleared for access to
addresses $4000–$7FFF. The direct addressable space means that the
addresses can be read without using the PPAGE register. However,
program and erase operations still require paging.

• In 32-K window configuration:

– $8000–$FFFF, page-addressable FLASH space
 AN2166

6 MOTOROLA

Application Note
FLASH Memory Mapping
• $0013, miscellaneous mapping control register, MISC

• $00F4, FLASH lock control register, FEELCK

• $00F5, FLASH module configuration register, FEEMCR

• $00F7, FLASH control register, FEECTL

Programming tools are available from Motorola. Contact a local Motorola
representative for more information.

FLASH Memory Mapping

The FLASH memory on the MC68HC912DT128A/DG128A can be
configured to different window sizes. As mentioned earlier, four physical
arrays of FLASH memory are on the device. A special bit controls
whether each array is divided into 16-Kbyte or 32-Kbyte windows.

This function is controlled in a special mapping register which is critical
in FLASH operation. This is known as the miscellaneous mapping
control register, and it is located at $0013.

Only the bits that relate to FLASH operation will be discussed here.
Refer to MC68HC912DT128A and MC68HC912DG128A Technical
Data for information on device modes and other bits.

ROMTST — FLASH EEPROM Test Mode

This bit determines the memory window configuration for the FLASH.
In normal modes, this bit is clear upon reset, but may be changed with
a write to the MISC register.

0 = FLASH is divided into 16-Kbyte windows from $8000–$BFFF.
1 = FLASH is divided into 32-Kbyte windows from $8000–$FFFF.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
ROMTST NDRF RFSTR1 RFSTR EXSTR1 EXSTR0 ROMHM ROMON

Write:

Reset: 0 0 0 0 1 1 0 1

Figure 1. Miscellaneous Mapping Control Register (MISC)
 AN2166

MOTOROLA 7

Application Note
ROMHM — FLASH EEPROM Half Map

This bit has no meaning if the ROMON bit is clear. The function of this
bit changes depending on the value of the ROMTST bit.

If ROMTST = 0, when ROMHM = :

0 = Page 6 can be accessed at locations $4000–$7FFF
1 = Page 6 can NOT be accessed at locations $4000–$7FFF.

Page 6 can be accessed at addresses $8000–$BFFF using
the PPAGE register set to 6.

If ROMTST = 1, when ROMHM = :

0 = There are four distinct page-addressable FLASH memory
arrays.

1 = The four FLASH arrays overlap each other. A write or erase to
one array will write or erase all four arrays.

ROMON — FLASH EEPROM Enable Bit

This bit is used to enable/disable the FLASH arrays.

0 = FLASH arrays are disabled.
1 = FLASH arrays are enabled.

Table 3 summarizes the effect of these bits on the address ranges and
page values for each memory window configuration.
 AN2166

8 MOTOROLA

Application Note
FLASH Memory Mapping
Table 3. Memory Window Ranges

Array Page PPAGE

FLASH
Control
Register

Locations

ROMTST Bit in MISC = 0
Windows are 16 K Each

See Figure 2.

ROMTST Bit in MISC = 1
Windows are 32 K Each(1)

See Figure 3.

00FEE32K

0 000
$00F4–
$00F7(2)

$8000–$BFFF
$8000–$FFFF

Boot block = $E000–$FFFF(3)
1 001

$8000–$BFFF
Boot block = $A000–$BFFF

01FEE32K

2 010
$00F4–
$00F7(2)

$8000–$BFFF
$8000–$FFFF

Boot block = $E000–$FFFF(3)
3 011

$8000–$BFFF
Boot block = $A000–$BFFF

10FEE32K

4 100
$00F4–
$00F7(2)

$8000–$BFFF
$8000–$FFFF

Boot block = $E000–$FFFF(3)
5 101

$8000–$BFFF
Boot block = $A000–$BFFF

11FEE32K

6 110

$00F4–
$00F7(2)

$8000–$BFFF
or

$4000–$7FFF(4)

$8000–$FFFF
Boot block = $E000–$FFFF(3)

7 111

$8000–$BFFF
Boot block = $A000–$BFFF

or
$C000–$FFFF

Boot block = $E000–$FFFF

1. Addresses $4000–$7FFF are not accessible in this configuration. Also, If both the ROMTST and the ROMHM bits are set,
the four memory arrays overlap. A write/erase to any location will be duplicated over all four arrays.

2. Each FLASH array has one set of registers. Therefore, you can access the registers with either page value in the PPAGE
register.

3. If the ROMTST bit is set, then the array can be programmed/erased with the PPAGE register set to either page.
4. This memory window only exists if the ROMHM bit in the MISC register is clear. The bit is cleared on reset. In this case,

these addresses can be read directly or can be programmed or erased using the PPAGE register.
 AN2166

MOTOROLA 9

Application Note
Figure 2. 16-Kbyte Configuration

$8000
TO

$BFFF

0 1 2 3 4 5 6 7

PAGE 7 IS DUPLICATED AT $C000–$FFFF. THESE 16 BYTES CAN BE READ,
PROGRAMMED, OR ERASED AT EITHER “LOCATION.”

PAGE 6 MAY BE DUPLICATED AT $4000–$7FFF. IF THE OPTION IS
ENABLED, THESE 16 KBYTES CAN BE READ, PROGRAMMED, OR ERASED
AT EITHER “LOCATION.”6

7

16-KBYTE CONFIGURATION:
8 16-KBYTE WINDOWS
PPAGE REGISTER DETERMINES WHICH WINDOW IS ACTIVE

$4000
TO

$7FFF

$C000
TO

$FFFF

BOOT BLOCKS

THESE PAGES SHARE ONE SET OF REGISTERS
 AN2166

10 MOTOROLA

Application Note
FLASH Block Protection
Figure 3. 32-Kbyte Configuration

FLASH Block Protection

Four memory ranges of 8 Kbytes each can be protected from being
inadvertently programmed or erased. The protected blocks are located
at page addressable addresses of $A000–$BFFF or $E000–$FFFF
depending on how the memory windows are configured.

Table 3 summarizes the protected boot blocks on these devices.

Block protection is controlled by the FLASH module configuration
register, FEEMCR, located at $00F5. See MC68HC912DT128A and
MC68HC912DG128A Technical Data, for more information on this
register.

$8000
TO

$FFFF

0 AND 1 2 AND 3 4 AND 5 6 AND 7

32-KBYTE CONFIGURATION:
4 32-KBYTE WINDOWS
PPAGE REGISTER DETERMINES WHICH WINDOW IS ACTIVE

$4000
TO

$7FFF

BOOT BLOCKS

THESE PAGES SHARE ONE SET OF REGISTERS

NON-FLASH
SPACE
 AN2166

MOTOROLA 11

Application Note
FLASH Control Registers

Each of the four FLASH arrays has three registers that control its
operation:

• $00F4, FLASH lock control register (FEELCK)

• $00F5, FLASH module configuration register (FEEMCR)

• $00F7, FLASH control register (FEECTL)

The PPAGE register must be used to select the correct register set. The
user should ensure that the correct FLASH control registers are
configured for each memory array. See Table 3 for more information.

NOTE: There are essentially 12 distinct FLASH control registers.

These registers are described in detail in MC68HC912DT128A and
MC68HC912DG128A Technical Data.

Word Alignment

The programming and erasing algorithms include a write to a random
address within the array. This write allows the memory to pinpoint the
proper physical location for the actual erasing or programming. While the
actual data written can be any word, the address written to must be an
aligned word.

An aligned word is defined as any 2-byte space starting with an address
where the final digit is an even number. That means words starting with
an address of the form $xxx0, $xxx2, $xxx4, ..., $xxxE. A misaligned
word has an odd final digit.

If the user specifies a misaligned word in the write step of the erasing
algorithm, the memory erase function will not be successful. This
restriction also holds true for the programming algorithm, both for the
row-selection write (step 2) and also for the actual address being
programmed.
 AN2166

12 MOTOROLA

Application Note
FLASH Erase Operation
FLASH Erase Operation

On the MC68HC912DT128A/DG128A, the entire active FLASH array of
32 Kbytes is erased at once. The protected locations will not be erased
unless the BOOTP bit in the FLASH module configuration register
(FEEMCR) is cleared first. See Table 3 for boot block locations.

Figure 4 shows the flowchart for the erase operation.

NOTE: The user should make sure that the proper window is selected in the
MISC and PPAGE registers, or other FLASH addresses may be
accidentally erased.

1. Set the ERAS bit in the FLASH control register (FEECTL).

ERAS = 1 configures the FLASH memory for an erase operation.

2. Write any word to any word-aligned FLASH address within the
window.

The data written and the address written to are not important.

3. Wait for a time, tNVS.

Internal high voltage is charged.

4. Set the HVEN bit.

Internal high voltage is applied to the window.

5. Wait for a time, tERAS.

tERAS is the erase time.

6. Clear the ERAS bit.

The erase operation is disabled.

7. Wait for a time, tNVHL.

This is the time required for internal high voltage to discharge from
the window.

8. Clear the HVEN bit.

Disable the internal high voltage.

9. Wait for a time, tRCV.

After a time, tRCV, the memory can be accessed in normal read
mode.
 AN2166

MOTOROLA 13

Application Note
Figure 4. FLASH Erase Operation Flowchart

ADDRESS IN THE WINDOW TO ERASE

STEP 2

ERASE

SET ERAS BIT

STEP 1

WRITE TO ANY WORD-ALIGNED

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

STEP 9

ERASE OPERATION
COMPLETE

WAIT TIME tNVS

CLEAR ERAS BIT

WAIT TIME tERAS

CLEAR HVEN BIT

WAIT TIME tNVHL

WAIT TIME tRCV

SET HVEN BIT
 AN2166

14 MOTOROLA

Application Note
FLASH Program Operation
FLASH Program Operation

On the MC68HC912DT128A/DG128A, programming of the FLASH
memory is done on a row-by-row basis, with each programming cycle
writing a word (2 bytes).

A row consists of 32 consecutive words (64 bytes) with the following
boundaries:

• $xx00–$xx3F
• $xx40–$xx7F
• $xx80–$xxBF
• $xxC0–$xxFF

During a programming cycle, make sure that all addresses being written
to fit within one of the ranges specified. Attempts to program addresses
in different row ranges in one programming cycle will cause unintentional
programming. For example, programming from addresses $xx30 to
$xx6F will not be successful because addresses $xx30–$xx3F and
$xx40–$xx6F are in different rows.

WARNING: The FLASH attempts to program in rows. The user should ensure
that all of the programmed data fits in one row, or some FLASH
addresses may be unintentionally programmed!

The programming algorithm outlined next specifies some delay times.
Take care that exact delay times are used. Excessive program time can
result in a program disturb condition, in which case an erased bit on the
row being programmed may become unintentionally programmed.

NOTE: To avoid program disturb, the row must be erased before any byte on
that row is programmed.

Figure 5 shows the flowchart for the programming algorithm.

NOTE: The user should make sure that the proper window is selected in the
MISC and PPAGE registers, or the proper FLASH addresses may not be
programmed.
 AN2166

MOTOROLA 15

Application Note
1. Set the PGM bit in the FLASH control register (FEECTL).

PGM = 1 configures the FLASH memory for a program operation.

2. Write a word of data to any word-aligned FLASH address within
the row address range desired.

3. Wait for a time, tNVS.

Internal high voltage is charged.

4. Set the HVEN bit.

Internal high voltage is applied to programming row.

5. Wait for a time, tPGS.

tPGS is program hold time.

6. Write one data word (2 bytes) to a word-aligned FLASH address
to be programmed.

If the BOOTP bit in the FLASH module control register (FEEMCR)
for this range is set, an attempt to program the location will be
ignored.

7. Wait for a time, tFPGM.

tFPGM is the 1-word programming time. tFPGM actually includes the
total time from step 6 (A on the flowchart) back to step 6 (B on the
flowchart) for additional word programming, or from step 6 (A) to
step 9 (C on the flowchart) for the last word. This total time must
be between 30 and 40 µs in both cases. Refer to Figure 5.

8. Repeat steps 6 and 7 until all the bytes within the row are
programmed.

9. Clear the PGM bit.

Disable the programming operation.

10. Wait for a time, tNVH.

Internal high voltage is discharged from the row.

11. Clear the HVEN bit.

Internal high voltage is disabled.

12. Wait for a time, tRCV.

After a time, tRCV, the memory can be accessed in normal read
mode.

While these operations must be performed in the order shown, other
unrelated operations may occur between the steps.
 AN2166

16 MOTOROLA

Application Note
FLASH Program Operation
Do not exceed tFPGM maximum or tHV maximum. tFPGM is defined in
step 7. tHV is defined as the cumulative time that high voltage is applied
to the same row before an erase.

tHV = tNVS + (tFPGM * (Number of Words Programmed))

Figure 5. FLASH Program Operation Flowchart

PROGRAM OPERATION

SET HVEN BIT

STEP 2

PROGRAM

SET PGM BIT

STEP 1

WRITE A WORD TO ANY

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

STEP 9

COMPLETE

WAIT TIME tNVS

WRITE ONE DATA WORD TO A

WAIT TIME tPGS

CLEAR PGM BIT

WAIT TIME tFPGM

WAIT TIME tNVH

WORD-ALIGNED ADDRESS IN THE ROW

WORD-ALIGNED FLASH LOCATION

COMPLETED
PROGRAMMING

THIS ROW?

STEP 10

STEP 11
CLEAR HVEN BIT

WAIT TIME tRCV

STEP 12

YES

NO

A
B

C

This routine assumes that the
row being programmed was
initially erased.

Note: tFPGM is the total time from
A to B or from A to C. This time
must be between 30 and 40 µs.
 AN2166

MOTOROLA 17

Application Note
EEPROM Functional Description

The MC68HC912DT128A/DG128A devices contain 2 Kbytes of
EEPROM memory. An erased bit in the EEPROM reads as a logic 1 and
a programmed bit reads as a logic 0.

The algorithm can program one byte or an aligned word (2 bytes) at a
time. The erase operation can be used to erase the entire EEPROM
(2 Kbytes), a row (32 bytes), a word (2 bytes), or a single byte at a time.
Program and erase operations are facilitated through control bits in
memory-mapped registers. Details for these operations appear later in
this application note.

The EEPROM memory module and associated registers on the
MC68HC912DT128A/DG128A are:

• $0800–$0FFF, EEPROM array, 2 Kbytes

• $00EE, EEPROM modulus divider high register, EEDIVH

• $00EF, EEPROM modulus divider low register, EEDIVL

• $00F0, EEPROM module configuration register, EEMCR

• $00F1, EEPROM block protect register, EEPROT

• $00F3, EEPROM control register, EEPROG

Programming tools are available from Motorola. Contact a local Motorola
representative for more information.

EEPROM Control Registers

The EEPROM register set consists of the five registers listed previously.

The modulus divider registers are used to set the timebase for the
EEPROM clock. The module configuration register controls several
modes of the device as well as block protection and the SHADOW word.
See Timebase Initialization and SHADOW Word for more information
on these registers.
 AN2166

18 MOTOROLA

Application Note
EEPROM Block Protection
The block protect register will be discussed further in EEPROM Block
Protection, and the EEPROM control register is used directly in the
erasing and programming algorithms.

These registers are described in detail in MC68HC912DT128A and
MC68HC912DG128A Technical Data.

EEPROM Block Protection

The block protection feature exists to protect the EEPROM from being
inadvertently programmed or erased. The user may specify which
regions of the EEPROM to protect using the EEPROM block protect
register, EEPROT.

Table 4 summarizes the protection size and addresses for each bit of
the EEPROT register.

Once the user has set up block protection, the contents of the block
protection register can be locked. To do this, set the PROTLCK bit in the
EEPROM module configuration register, EEMCR.

Table 4. EEPROM Protected Ranges

Bit Name Protected Addresses Protected Size

BPROT5 $0800–$0BFF 1024 bytes

BPROT4 $0C00– $0DFF 512 bytes

BPROT3 $0E00–$0EFF 256 bytes

BPROT2 $0F00–$0F7F 128 bytes

BPROT1 $0F80–$0FBF 64 bytes

BPROT0 $0FC0–$0FFF 64 bytes
 AN2166

MOTOROLA 19

Application Note
Timebase Initialization and SHADOW Word

To function properly, this new version of EEPROM requires a steady
internal clock of 35 µs (± 2 µs). This clock is divided down from the
oscillator clock (EXTAL) by the value in the EEPROM modulus divider
registers, EEDIVH and EEDIVL.

Use the following formula to determine the proper divide value.

EEDIV = INT [EXTAL (Hz) x (35 x 10–6) + 0.5]

NOTE: INT [A] denotes the round-down integer value of A.

The EEPROM contains a special word location called the SHADOW
word ($0FC0–$0FC1) which can be used to set up the required
timebase. At reset, the value programmed into the SHADOW word is
automatically loaded into the EEDIVH:EEDIVL registers. Once the
timebase has been set up in the SHADOW word, the user will be able to
use the EEPROM without considering clocking. Other than this timebase
step, code is backward compatible with the MC68HC912DG128.

To set up the timebase, follow these steps:

1. Calculate the EEDIV value.

2. Write EEDIV into the EEDIVH:EEDIVL registers.

3. Program the SHADOW word to reflect the EEDIV value and the
desired values for the EEPROM module configuration register,
EEMCR.

WARNING: When the EEDIV value is set to 0, the EEPGM bit cannot be set.

The SHADOW word maps into the upper four bits of the EEMCR and
10 bits of the EEDIV registers. See Table 5 for information on SHADOW
word mapping.
 AN2166

20 MOTOROLA

Application Note
EEPROM Erase Operation
Once the timebase and module information has been defined and
programmed using the SHADOW word, this location can be protected
from unintended programming or erasing. This feature is controlled by
the SHPROT bit in the EEPROM block protect register, EEPROT.

EEPROM Erase Operation

On the MC68HC912DT128A/DG128A, erasing can be done on a per-
byte, per-word (2 bytes), per-row (32 bytes) or bulk array (2 Kbytes)
basis. Word erasing requires the start address to be an aligned word.
For more information on word alignment, see Word Alignment.

If some protected locations are included in the erase area, those bytes
will not be affected and only the unprotected locations will be erased.
Refer to Table 4 for block protection locations.

There are two ways to erase the EEPROM. This can be done using the
standard mode erasing algorithm which includes defined delays, or the
AUTO mode erasing algorithm can be employed. In the AUTO mode,
there are no fixed delays, and instead the EEPGM bit is polled. When
the bit is cleared, the erasing has been completed.

Table 5. SHADOW Word Mapping

High Byte $0FC0

Register EEMCR EEMCR EEMCR EEMCR NA NA EEDIVH EEDIVH

Bit NOBDML NOSHW Bit 5 Bit 4 NA NA EEDIV9 EEDIV8

Low Byte $0FC1

Register EEDIVL EEDIVL EEDIVL EEDIVL EEDIVL EEDIVL EEDIVL EEDIVL

Bit EEDIV7 EEDIV6 EEDIV5 EEDIV4 EEDIV3 EEDIV2 EEDIV1 EEDIV0
 AN2166

MOTOROLA 21

Application Note
EEPROM Standard Mode Erasing Algorithm

Figure 6 shows the flowchart for the standard mode erasing algorithm.

1. Write the BULKP, BYTE, and ROW bits in the EEPROM control
register (EEPROG) to specify the erase size. Set the ERASE bit
to specify erasing operation. Set the EELAT bit to control erasing
latches.

2. Write a byte of data to an EEPROM address OR write a word of
data to a word-aligned EEPROM address.

If the erase operation is not erasing the entire array or a full row,
then this write determines whether a single byte or a word will be
erased. Therefore, the address written to must be within the
desired erase block.

3. Set the EEPGM bit.

Apply erasing voltage to the EEPROM.

NOTE: If the value stored in the EEDIV registers is a zero, then the EEPGM bit
will not be set.

4. Wait tERASE.

tERASE is the high voltage hold time for erasing.

5. Clear the EEPGM bit.

Disable the erasing voltage from the array.

6. Clear the EELAT bit.

Set the EEPROM into the normal mode.

Table 6. Erase Size Selection

BULKP BYTE ROW Block Size

0 0 0 Bulk erase (2 Kbytes)

0 0 1 Row erase (32 bytes)

X(1) 1 X(1)

1. X = Don’t care

1 byte or 1 word erase(2)

2. If BYTE = 1, then the value of the ROW and BULKP bits are not important. If the value
written in step 2 is 1 byte, then the operation will erase 1 byte. If the value written is one
word, then the erase operation will erase one word.
 AN2166

22 MOTOROLA

Application Note
EEPROM AUTO Mode Erasing Algorithm
EEPROM AUTO Mode Erasing Algorithm

Figure 6 shows the flowchart for the AUTO mode erasing algorithm.

1. Write the BULKP, BYTE, and ROW bits in the EEPROM control
register (EEPROG) to specify the erase size. Set the ERASE bit
to specify erasing operation. Set the EELAT bit to control erasing
latches. Set the AUTO bit for automatic erasing time termination.
See Table 6 for a description of the BULKP, BYTE, and ROW bits.

2. Write a byte of data to an EEPROM address or write a word of
data to a word-aligned EEPROM address.

If the erase operation is not erasing the entire array or a full row,
then this write determines whether a single byte or a word will be
erased. Therefore, the address written to must be within the
desired erase block.

3. Set the EEPGM bit.

Apply erasing voltage to the EEPROM.

NOTE: If the value stored in the EEDIV registers is a zero, then the EEPGM bit
will not be set.

4. Poll the EEPGM bit until it is cleared by the internal timer.

5. Clear the EELAT bit.

Set the EEPROM into the normal mode.

NOTE: In AUTO mode, be careful about erase attempts on protected areas. If
the erase area (byte, word, row) is a protected area, the erasing will not
be successful and the EEPGM bit will never clear. The user may include
a step to verify that the addresses in question are not protected, or
include a timer to ensure that the software does not get trapped in that
step. A bulk erase, even if some of the memory areas are protected,
WILL result in unprotected memory areas being erased.
 AN2166

MOTOROLA 23

Application Note
Figure 6. EEPROM Erasing Algorithm Flowcharts

EEPROM Program Operation

On the MC68HC912DT128A/DG128A, programming can be done on a
per-byte or per-aligned-word (2 bytes) basis. For more information on
aligned words, see Word Alignment.

If some protected locations are included in the program area, those
bytes will not be affected and only the unprotected locations will be
altered. See Table 4 for block protection locations.

There are two ways to program the EEPROM. This can be done using
the standard mode programming algorithm which includes defined
delays, or the AUTO mode programming algorithm can be employed. In
the AUTO mode, there are no fixed delays, and instead the EEPGM bit
is polled. When the bit is cleared, the programming has been completed.

STEP 3

WRITE BYTE, ROW, AND BULKP
FOR ERASE SIZE

STEP 1

STANDARD ERASE

SET EEPGM BIT

SET ERASE AND EELAT

WRITE A BYTE TO AN EEPROM
ADDRESS OR A WORD TO A

STEP 2

WORD-ALIGNED ADDRESS WITHIN

STEP 4

tERASE

WAIT TIME

CLEAR EELAT BIT

STEP 6

STEP 5

CLEAR EEPGM BIT

ERASE OPERATION COMPLETE

STEP 5

CLEAR EELAT BIT

ERASE OPERATION COMPLETE

STEP 3

AUTO ERASE

SET EEPGM BIT

WRITE BYTE, ROW, AND BULKP
FOR ERASE SIZE

SET ERASE, EELAT, AND AUTO BITS

STEP 2

STEP 1

STEP 4

EEPGM BIT CLEARED?

YES

NO

THE RANGE TO BE ERASED

WRITE A BYTE TO AN EEPROM
ADDRESS OR A WORD TO A

WORD-ALIGNED ADDRESS WITHIN
THE RANGE TO BE ERASED
 AN2166

24 MOTOROLA

Application Note
EEPROM Standard Mode Programming Algorithm
EEPROM Standard Mode Programming Algorithm

Figure 7 shows the flowchart for the standard mode programming
algorithm.

1. Clear the ERASE bit to specify programming operation. Set the
EELAT bit to control programming latches.

2. Write a byte of data to an EEPROM address or write a word of
data to a word-aligned EEPROM address.

The size of this write determines whether a single byte or a word
will be programmed. Make sure that the address is a byte or an
aligned word.

3. Set the EEPGM bit.

Apply programming voltage to the EEPROM.

4. Wait tPROG.

tPROG is the high voltage hold time for programming.

5. Clear the EEPGM bit.

Disable the programming voltage from the array.

6. Clear the EELAT bit.

Set the EEPROM into the normal mode.
 AN2166

MOTOROLA 25

Application Note
EEPROM AUTO Mode Programming Algorithm

Figure 7 shows the flowchart for the AUTO mode programming
algorithm.

1. Clear the ERASE bit to specify programming operation. Set the
EELAT bit to control programming latches. Set the AUTO bit for
automatic programming time termination.

2. Write a byte of data to an EEPROM address or write a word of
data to a word-aligned EEPROM address.

The size of this write determines whether a single byte or a word
will be programmed. Make sure that the address is a byte or an
aligned word.

3. Set the EEPGM bit.

Apply programming voltage to the EEPROM.

4. Poll the EEPGM bit until it is cleared by the internal timer.

5. Clear the EELAT bit.

Set the EEPROM into the normal mode.

NOTE: In AUTO mode, if the programming block is a protected area, the
programming will not be successful and the EEPGM bit will never clear.
The user may include a step to verify that the addresses in question are
not protected, or include a timer to ensure that the software does not get
trapped in that step.
 AN2166

26 MOTOROLA

Application Note
Selective Bit Programming
Figure 7. EEPROM Programming Algorithm Flowcharts

Selective Bit Programming

On each programming cycle, one to eight bits of the EEPROM memory
may be programmed. It is possible to program multiple bits at the same
time. However, the same bit may not be programmed twice unless the
entire byte has been erased first. This means that the same byte location
may be programmed eight times as long as an individual bit is not written
to more than once. This is referred to as selective bit programming. The
acceptable sequence in Table 7 shows how the same byte may be used
for eight program cycles without an erase.

STEP 5

CLEAR EELAT BIT

PROGRAM OPERATION COMPLETE

AUTO PROGRAM

PROGRAM OPERATION COMPLETE

STEP 3

STEP 1

STANDARD PROGRAM

SET EEPGM BIT

CLEAR ERASE AND SET EELAT

STEP 2

STEP 4

WAIT TIME tPROG

CLEAR EELAT BIT

STEP 6

STEP 5

CLEAR EEPGM BIT

STEP 3

SET EEPGM BIT

CLEAR ERASE, SET EELAT AND AUTO BITS

STEP 2

STEP 1

STEP 4

EEPGM BIT CLEARED?

YES

NO

WRITE A BYTE TO AN EEPROM
ADDRESS OR A WORD TO A

WORD-ALIGNED ADDRESS WITHIN
THE RANGE TO BE PROGRAMMED

WRITE A BYTE TO AN EEPROM
ADDRESS OR A WORD TO A

WORD-ALIGNED ADDRESS WITHIN
THE RANGE TO BE PROGRAMMED
 AN2166

MOTOROLA 27

Application Note
EEPROM memory lifetime is guaranteed for 10-K program/erase cycles.
However, using selective bit programming extends the life cycle of the
memory 8-fold since each bit is only programmed 10-K times. This
allows the user to program a single byte up to 80-K times.

If a bit is programmed more than once before the byte is erased,
Motorola cannot guarantee proper operation of the EEPROM array.

Table 7. Selective Bit Programming

Acceptable Sequence Unacceptable Sequence

Operation Program
Data

Value
in Memory Operation Program

Data
Value

 in Memory

Erase NA 1111:1111 Erase NA 1111:1111

Write $FE 1111:1110 1111:1110 Write $FE 1111:1110 1111:1110

Write $FD 1111:1101 1111:1100 Write $F9 1111:1001 1111:1000

Write $FB 1111:1011 1111:1000 Write $EF 1110:1111 1110:1000

Write $F7 1111:0111 1111:0000 Write $D8 1101:1000 Unknown

Write $EF 1110:1111 1110:0000

Write $DF 1101:1111 1100:0000

Write $BF 1011:1111 1000:0000

Write $7F 0111:1111 0000:0000

Erase NA 1111:1111
 AN2166

28 MOTOROLA

Application Note
Practical Considerations for Programming/Erasing
Practical Considerations for Programming/Erasing

To ensure successful programming and erasing of the FLASH and/or
EEPROM on the MC68HC912DT128A/DG128A, the user should
consider the following suggestions:

• Provide a good ground.

• Provide a clean and constant clock during the program and erase
operations.

• Filter all signals leaving a noisy environment.

• If a microcontroller is programmed or erased in a socket, ensure
that all pins are making good electrical contact.

• Provide an electrically noise-free environment for the MCU. The
VDD supply should be filtered and within the specification limits.
Decoupling capacitors should be placed very close to the VDD/VSS
pin pairs. Any high current switching activity on the PCB or in the
general vicinity should be disabled during programming.

Evaluating Delay Times for the Sample Code

The FLASH algorithm include specific delay steps. These delay times
are defined in the MC68HC912DT128A/DG128A specification and must
be considered when utilizing the algorithm.

To ensure that each delay step meets the specification, the delay times
have to be evaluated. All delays in the sample code provided in this
application note were evaluated and confirmed to meet the specification
using a general I/O port pin. The port pin was initialized with a high
output signal. Just before entering a delay, the port pin was toggled low
and held low until the end of the delay.

The actual delay times shown in Table 8 and Table 9 were the low
periods as measured on an oscilloscope. To toggle the port pin,
instructions BSET, BCLR, and COM were used. The sample code also
includes the instructions used for the delay time evaluation.
 AN2166

MOTOROLA 29

Application Note
Table 8. FLASH Erase Delay Times

Name
of Delay

Specified
 Duration

Calculated
 Delay Time(1)

1. Delay time calculated by dividing the number of cycles in the delay by the bus speed of
8 MHz.

Actual
Delay Time Delta(2)

2. Most delta times are around 0.5 µs. Since the instructions BSET and COM require four
internal bus cycles, this additional time comes from the execution time of the instruction.

tNVS > 10 µs 10.25 µs
10.8 µs

(S1 to E1)(3)

3. These times refer to measured delays based on running the attached sample code. In that
code, the points at which measurements were taken are defined by these markers.

0.55 µs

tERAS > 8 ms 8.0 ms
8.0 ms

(S2 to E2)(3) 0 µs

tNVHL > 100 µs 100.25 µs
101.2 µs

(S3 to E3)(3) 0.95 µs

tRCV > 1 µs 1.25 µs
1.76 µs

(S4 to E4)(3) 0.51 µs

Table 9. FLASH Program Delay Times

Name
of Delay

Specified
Duration

Calculated
Delay Time(1)

1. Delay time calculated by dividing the number of cycles in the delay by the bus speed of
8 MHz.

Actual
Delay Time Delta(2)

2. Most delta times are around 0.5 µs. Since the instructions BSET and COM require four
internal bus cycles, this additional time comes from the execution time of the instruction.

tNVS > 10 µs 10.25 µs
10.76 µs

(S5 to E5)(3)

3. These times refer to measured delays based on running the attached sample code. In that
code, the points at which measurements were taken are defined by these markers.

0.51 µs

tPGS > 5 µs 5.37 µs
5.88 µs

(S6 to E6)(3) 0.505 µs

tFPGM 30 µs–40 µs
30.6 µs(4)

4. The word programmed is NOT the last word of the row being programmed (A to B on
Figure 3).

31.20 µs
(S7 to E7)(3) 0.6 µs

30.25 µs(5)

5. The word programmed IS the last word of the row being programmed (A to C on Figure 3).

30.80 µs
(S8 to E8)(3) 0.55 µs

tNVH > 5 µs 5.375 µs
5.88 µs

(S9 to E9)(3) 0.505 µs

tRCV > 1 µs 1.25 µs
1.76 µs

(S10 to E10)(3) 0.51 µs

1
8.0 MHz

× 4 cycles = 0.5 µs

1
8.0 MHz

× 4 cycles = 0.5 µs
 AN2166

30 MOTOROLA

Application Note
FLASH Frequently Asked Questions
FLASH Frequently Asked Questions

These questions and answers are designed to help the user with
frequent concerns.

Question 1 I cannot program/erase FLASH memory at all. What should I consider to
make my program/erase code work?

Answer 1 Check the following:

• Are the FLASH arrays enabled?

The FLASH is enabled/disabled by the ROMON bit in the
miscellaneous system control register, MISC. Ensure that the
ROMON bit is set to write to these addresses.

• Is each step of the programming algorithm (or erasing algorithm)
performed in the right order?

The sequence of the program and erase operations is interlocked
in hardware so only the prescribed order of these operations will
allow erase/program operations. However, other non-FLASH
operations may occur between the steps shown.

• Is the memory block where you want to program/erase
unprotected?

The block protect feature of the FLASH is present to prevent
unintentional programming or erasing. The block protect bits must
be cleared in the right page such that the memory to be erased or
programmed is unprotected.

• Are delay times (tPGS, tERAS, tNVHL, tNVS, tRCV, tNVH, tFPGM) within
the specification?

Timing is critical to ensure proper FLASH operation. Delay times
that are too long or too short can alter the FLASH performance to
the point where it does not work or is not reliable. Motorola does
not guarantee FLASH performance if all timing requirements are
not being adhered to.
 AN2166

MOTOROLA 31

Application Note
• Is the correct FLASH register being written to enable erase or
program?

The MC68HC912DT128A/DG128A has four FLASH arrays and
four separate sets of control and block protect registers. Make
sure the appropriate register set is being addressed in the PPAGE
register. Refer to FLASH Control Registers.

• Is the COP enabled?

The COP is the computer operating properly timer that periodically
checks the device for proper operation. If the COP is enabled, the
COPRST register has to be written periodically (with the values
$55 then $AA) to prevent a COP reset. To avoid issues, make sure
that the selected COP period is long enough that the COP feeding
process is not performed during the program/erase operation or
disable the COP entirely during this operation.

NOTE: The COP is always enabled out of RESET in normal modes and can be
disabled by modifying the COPCTL register.

• Was Motorola’s recommended programming algorithm (or erasing
algorithm) used in your code?

The recommended programming algorithm ensures that the
FLASH is programmed for sufficient data retention with a
minimum program time. Not following this algorithm can lead to
overprogramming, which risks program disturb.

Question 2 I wanted to erase only vector locations using the page erase operation,
but memory addresses were also erased. Did I do anything wrong?

Answer 2 No. The vector locations ($FF00–$FFFF) are located in the FLASH. On
the MC68HC912DT128A/DG128A, the minimum erase size is 32
Kbytes. In 16-Kbyte configuration, memory addresses $4000 to $7FFF
and $C000–$FFFF will all be erased at one time. In 32-Kbyte
configuration, all bytes from $8000–$FFFF in the active page will be
erased.
 AN2166

32 MOTOROLA

Application Note
FLASH Frequently Asked Questions
Question 3 What is the FLASH charge pump?

Answer 3 The charge pump is a dynamic (clocked) circuit which generates high
voltages internally in the FLASH to program and erase the nonvolatile
memory. Users do not have access to these voltages.

Question 4 The MC68HC912DT128A/DG128A FLASH programs one row
(64 bytes) at a time. Do I always have to program the entire row?

Answer 4 No, it is not necessary to program the entire row. If you include a test to
make sure that programming stops when the row boundary ends, then
addresses which are not programmed are left as they were before the
row programming was started. Be careful to not allow the code to
attempt a program beyond the end of the row; the other addresses may
be overwritten. Also note that, before reprogramming any additional
bytes in this row, the entire page must be erased.

Question 5 During a program/erase process, can I execute an interrupt service or
include additional steps?

Answer 5 Unrelated (non-FLASH) steps may be included between steps of the
program/erase algorithms as long as the sequence of the steps remains
consistent. However, interrupt service routines may cause errors in the
program or erase timing and lead to corrupt or missing data in the
FLASH. Motorola does not recommend the use of interrupts during the
program or erase operations.

WARNING: Make certain not to enter stop or wait mode during a program or
erase operation. High voltage may be exposed to bit cells for an
extended period and may cause permanent damage.

Question 6 I am executing program/erase code out of one of the memory arrays.
Can the same array be programmed/erased?

Answer 6 No. See question 7.
 AN2166

MOTOROLA 33

Application Note
Question 7 While running the program/erase code in one of the memory arrays, can
the other memory array be programmed/erased?

Answer 7 Yes. The MC68HC912DT128A/DG128A has four FLASH memory
arrays. IF the memory is configured into 16-Kbyte windows (ROMTST
bit = 0), array 11FEE32K can be used to program or erase code in the
other arrays. The code must be in addresses $4000–$7FFF or
$C000–$FFFF.

Question 8 Can I program/erase all FLASH arrays at the same time?

Answer 8 Yes and no. While each array does have a separate charge pump, the
address decode logic does not allow more than one row to be
programmed at a time. However, in the 32-Kbyte window configuration,
the memory can be set such that the four memory arrays overlap. This
is done by setting the ROMHM bit in the MISC register. In this case, all
memory arrays are programmed at the same time with the same data.
For more information on this feature, refer to the Resource Mapping
Section of MC68HC912DT128A and MC68HC912DG128A Technical
Data.

Question 9 When writing 64 bytes of data to one row of FLASH memory for
programming, does the order of written data matter?

Answer 9 No, as long as the bytes are written within a row, the data is latched for
the programming operation.

Question 10 I'm sending external data into the MC68HC912DT128A/DG128A for
programming. How can I speed up this programming process?

Answer 10 Excluding data download time, it takes about two seconds to program
128 Kbytes of FLASH. If data is transferred at a higher communication
baud rate or in a parallel manner, the overall programming time can be
reduced. The ideal situation would be a fast parallel transfer of data
during the delay times associated with the programming algorithm.
 AN2166

34 MOTOROLA

Application Note
FLASH Frequently Asked Questions
Question 11 Do I need to confirm the memory contents after programming the
FLASH?

Answer 11 It is recommended that the code used to program the FLASH also
include a verification step to ensure the integrity of the data programmed
into the FLASH.

Question 12 A block of memory in the FLASH array is protected by programming the
block protect register. When I execute an erase operation, will the
unprotected block be erased?

Answer 12 Yes. When a FLASH array is partially protected, the erase operation
erases all non-protected bytes, and leaves the protected bytes as they
were before erasing.

Question 13 What is the expected lifetime of FLASH memory?

Answer 13 The minimum program/erase endurance and data retention lifetime of
the FLASH memory for all conditions is found in MC68HC912DT128A
and MC68HC912DG128A Technical Data.

Question 14 What steps can I take to prolong the life of the FLASH memory?

Answer 14 The FLASH memory has a finite program/erase durability and a finite
data retention lifetime. However, the specification shows the minimum
lifetime considering the worst case set of conditions applied to the part.
In general, the FLASH will last longer if it is used at moderate
temperatures (0–70οC) and the program/erase cycles are kept to a
minimum.
 AN2166

MOTOROLA 35

Application Note
Question 15 The programming algorithm includes two write steps. Do both writes
need to use aligned word addresses?

Answer 15 Yes. The programming algorithm requires writes to occur to aligned
words. This restriction applies to both step 2 and step 6 of the
programming algorithm.

Question 16 What modes of operation cause the most noise?

Answer 16 Program and erase modes cause a significant amount of EMI
(electromagnetic interference) and power supply noise due to the high
transient current demand of the charge pump. High accuracy ADC
(analog-to-digital) conversions may not be possible while the FLASH is
programming or erasing.

Question 17 The memory is configured to use 32-Kbyte windows. What value should
I use in the PPAGE register to program/erase the array?

Answer 17 There are two pages per memory array. You can set the PPAGE register
to either page value to program/erase the associated array block when
in 32-K configuration. See Table 3 for more information on the memory
mapping.

Question 18 I am using the memory in 16-Kbyte window configuration, but I want to
write to address $4000–$7FFF (page 6) directly. This function is not
working. Why?

Answer 18 Direct access to address locations $4000–$7FFF is controlled by the
ROMHM bit in the miscellaneous system control register, MISC. Ensure
that the ROMHM bit is clear to write to these addresses. Note that
programming and erasing these locations requires setting the PPAGE
register to 6.
 AN2166

36 MOTOROLA

Application Note
FLASH Frequently Asked Questions
Question 19 In 32-Kbyte configuration, there are four memory arrays and four sets of
registers that must be considered. In 16 Kbyte configuration, are there
eight sets of registers?

Answer 19 No. There are always four physical arrays of FLASH on these devices,
and each array has a set of registers. In 16-Kbyte configuration, the
registers are shared between Pages 0&1, 2&3, 4&5, and 6&7. A write to
the registers will modify their contents with either page being set in the
PPAGE register. See FLASH Memory Mapping for more information.

Question 20 I attempted to program/erase a section of memory, but a different
section of memory was programmed/erased instead. What did I do
wrong?

Answer 20 The MC68HC912DT128A/DG128A has 128 Kbytes of FLASH memory,
but they require page accessing to program. Not only does the proper
address have to be used in the programming or erasing algorithm, but
the PPAGE register must be pointing to the desired page. See Table 3
for more information.

Question 21 The memory is configured to 16-Kbyte windows. Will the erase function
erase the active 16-Kbyte window, or will it erase the entire 32-Kbyte
array that the active window is in?

Answer 21 The entire 32-Kbyte window will be erased, unless the boot block
protection bit is set. In that case, the non-protected bits, the top
24 Kbytes of the array, will be erased.

Question 22 The erasing algorithm uses a write to determine which array to erase.
Does it matter which address I use for that write?

Answer 22 As long as the address written to is an aligned word, it can be any
address within the array. See Word Alignment for more information.
 AN2166

MOTOROLA 37

Application Note
EEPROM Frequently Asked Questions

Question 1 I cannot program/erase EEPROM memory at all. What should I consider
to make my program/erase code work?

Answer 1 Check the following:

• Is the EEPROM array enabled?

The EEPROM is enabled/disabled by the EEON bit in the
Initialization of Internal EEPROM position register, INITEE.
Ensure that the EEON bit is set to write to these addresses.

• Did you program correct divider values in the EEDIV registers
(EEDIVH and EEDIVL)?

The EEDIVH and EEDIVL registers are loaded from the SHADOW
word ($0FC0–$0FC1) at reset. You must first calculate the desired
EEDIV value for the crystal frequency being used. After that, you
can either write that value to EEDIVH:EEDIVL for temporary
operation, or program that value into the SHADOW register and
reset the part. All of this must be done before executing the erase
or program operation. In normal mode, the EEDIV registers are
write-once registers. See Timebase Initialization and SHADOW
Word for more information.

• Did you use our recommended programming and erasing
algorithms in your code?

The EEPROM consists of FLASH memory surrounded by a logic
state machine. Motorola's recommended programming algorithm
ensures that the EEPROM is programmed for sufficient data
retention and in a minimum program time. Motorola does not
guarantee the performance of the EEPROM if the recommended
algorithms are not followed.

• Is each step of the programming and erasing algorithms
performed in the right order?

The sequence of the program and erase operations are
interlocked in hardware so only the prescribed order of these
operations can occur. However, other non-EEPROM operations
may occur between the steps shown.
 AN2166

38 MOTOROLA

Application Note
EEPROM Frequently Asked Questions
• Is the memory block where you want to program/erase
unprotected?

The block protect feature of the EEPROM is present to prevent
unintentional programming or erasing. The block protect bits must
be cleared such that the memory to be erased or programmed is
unprotected.

• Are delay times (tPROG, tERASE) within the specification?

In standard mode, timing is critical to ensure proper EEPROM
operation. Delay times that are too long or too short can alter the
EEPROM performance to the point where it does not work or is not
reliable. Motorola does not guarantee EEPROM performance if
the wrong delay times are used.

• Is the array mapped where you expect it?

The EEPROM may be mapped to any 4-Kbyte boundary within the
address space. The upper four bits of the initialization of internal
EEPROM position register, INITEE, sets up the EEPROM address
block. These bits are clear on reset.

Question 2 Why do I need to set up constant timebase?

Answer 2 The EEPROM is actually a FLASH cell surrounded by a logic state
machine. The state machine requires an accurate clock source for
applying high voltage during the erase and program operations.

Question 3 What is the benefit of using the AUTO mode?

Answer 3 When you use the AUTO EEPROM programming and erasing
algorithms, the programming and erasing time may be much shorter
than when you use the standard EEPROM algorithms. Whenever
programming or erasing is done, the EEPGM bit is automatically
cleared, eliminating the wait for a fixed delay time. Furthermore, since
the delay time is not necessary, the delay routine is not required in your
code.
 AN2166

MOTOROLA 39

Application Note
Question 4 During a program/erase process, can I execute an interrupt service or
include additional steps?

Answer 4 Unrelated (non-EEPROM) steps may be included between steps of the
program/erase algorithms as long as the sequence of the steps remains
consistent. However, interrupt service routines can cause errors in the
program or erase timing and lead to corrupt or missing data in the
EEPROM. Motorola does not guarantee performance of the EEPROM if
interrupts are not masked during the program or erase operation.

Question 5 Can I program each bit in the same EEPROM location successively?

Answer 5 No. However, the same byte location can be successively programmed
using selective bit programming. Refer to Selective Bit Programming.

Question 6 Is one charge pump used for both EEPROM and the FLASH arrays?

Answer 6 No. Each FLASH array has a separate charge pump, and the EEPROM
has its own charge pump.

Question 7 Do I need to confirm the memory contents after programming the
EEPROM?

Answer 7 It is recommended that the code used to program the EEPROM also
include a verification step to ensure the integrity of the data
programmed.

Question 8 What is the expected lifetime of EEPROM memory?

Answer 8 The minimum program/erase endurance and data retention lifetime of
the EEPROM memory for all conditions is found in MC68HC912DT128A
and MC68HC912DG128A Technical Data.
 AN2166

40 MOTOROLA

Application Note
EEPROM Frequently Asked Questions
Question 9 What steps can I take to prolong the life of the EEPROM memory?

Answer 9 The EEPROM memory has a finite program/erase durability and a finite
data retention lifetime. However, the specification quotes the minimum
guaranteed lifetime considering the worst case set of conditions applied
to the part. In general, the EEPROM array will last longer if the
program/erase cycling is kept to a minimum and the temperature is kept
at a nominal level (0–70oC).

Question 10 Can I program/erase the EEPROM at the maximum temperature limits
for the specified life of the part?

Answer 10 Yes. Program/erase cycle durability is specified to be 10-K minimum.
However, exceeding that value is not recommended. Reading the
EEPROM can occur continuously over the life of the product.

Question 11 I have calculated the EEDIV value and tried to program it in the
SHADOW word locations. Why is the value not programming into this
location?

Answer 11 This may have several causes. For instance:

• What is the value of the SHPROT bit in the EEPROM block protect
register, EEPROT? If this bit is set, the SHADOW word is
protected from programming and erasing.

• Have you reset the part after programming the SHADOW word?
The SHADOW word is loaded into the EEDIV register only on
reset.

• Are you trying to read the SHADOW word at locations
$0FC0–$0FC1? These EEPROM locations are mapped to the
SHADOW word ONLY when the NOSHW bit in the EEPROM
module configuration register, EEMCR, is clear.
 AN2166

MOTOROLA 41

Application Note
Question 12 I cleared the EEPROM block protection register, EEPROT. Why am I still
not able to program all the EEPROM addresses?

Answer 12 While you may have executed an erase on the register, the erase
function may not have been successful. First check the value of the
PROTLCK bit in the EEPROM module configuration register, EEMCR. If
the PROTLCK bit is set, then the EEPROM block protect register cannot
be changed.

Question 13 Can I ignore the SHADOW word and directly program the EEDIV value
into the EEDIVH and EEDIVL registers?

Answer 13 Yes. In normal modes, these are write-once registers (the EEPROM
latch control, EELAT, must be off). In special modes, these registers
may be written at any time, with the same condition as mentioned earlier.

Question 14 Can the AUTO bit be set at the same time as other bits in the EEPROM
control register, EEPROG?

Answer 14 Yes. The sample code sets the AUTO bit at the same time that the
BULKP, BYTE, ROW, ERASE, and EELAT bits are written. EEPGM can
NOT be set at the same time.

Question 15 What happens if you try to erase/program a protected range of
EEPROM?

Answer 15 The unprotected areas change, but the protected areas are unaffected.

Question 16 What happens when the SHADOW word is not used? What happens to
locations $0FC0 and $0FC1? How do you program the divider value?

Answer 16 First of all, the SHADOW word is a distinct place on the device. When
the SHADOW word is enabled via the NOSHW bit in the EEPROM
module configuration register, the EEPROM addresses $0FC0 and
$0FC1 map to the SHADOW word. When the SHADOW word is
disabled, the locations are normal EEPROM locations.
 AN2166

42 MOTOROLA

Application Note
FLASH Assembly Source Code Flowcharts
Whether the location is enabled or not, reset still loads the SHADOW
word into the EEDIVH:EEDIVL registers. For temporary operation,
change the divider value by writing directly to those registers. For long-
term operation, if you want to use these locations as normal EEPROM,
then you will need to execute a sequence where the SHADOW word is
enabled, programmed, and disabled.

Question 17 Even if the SHADOW word is enabled, can I still just write the divider
value to the EEDIVH:EEDIVL registers once the part is out of reset?

Answer 17 Yes. In normal modes, these registers are once-write registers, but in
special modes, they may be written at any time.

FLASH Assembly Source Code Flowcharts

The main routine in SSTflash.mrt initializes the device for erasing and
programming operations before calling the subroutines themselves. The
routine starts by setting up the FLASH as desired and filling a RAM data
buffer with values to program into the array. It then calls the
FlashErase subroutine which follows the algorithm listed in this
application note. After erasing an array of data, the main routine calls
ProgRow to program a row (64 bytes). SSTflash.mrt also includes a
verification step after the programming is completed.

The FlashErase and the ProgRow subroutines follow the flowcharts
shown in Figure 4 and Figure 5 closely. A flowchart is also included for
the ms_delay subroutine which generates delays greater than
1 millisecond.

NOTE: These routines must be executed at an 8-MHz bus frequency to meet
expected delay times.

The flowcharts for SSTflash.mrt, FlashErase, ProgRow, and
ms_delay are Figure 8, Figure 9, Figure 10, and Figure 11,
respectively.
 AN2166

MOTOROLA 43

Application Note
Figure 8. FLASH Main Routine Flowchart

CLEAR BLOCK PROTECTION

FILL RAM BUFFER WITH
64 BYTES OF DATA TO

TURN ON CLOCK MONITOR

SSTflash.mrt

PROGRAM INTO THE FLASH

CALL FlashErase TO ERASE
THE ARRAY

SET SIZE OF MEMORY WINDOW

LOAD ANY FLASH ADDRESS WITHIN
THE ADDRESS RANGE TO BE

ERASED INTO INDEX REGISTER X

SET PAGE TO ERASE

LOAD THE RAM BUFFER START
ADDRESS INTO INDEX REGISTER Y

CALL ProgRow TO PROGRAM
ONE ROW OF FLASH

SET BLOCK PROTECTION

END

VERIFY PROGRAMMED DATA
AGAINST RAM BUFFER DATA

DATA MATCH?

PROGRAMMING
FAILURE

NO YES

PROGRAMMING
SUCCESS

END

LOAD PROGRAMMING ROW START
ADDRESS INTO INDEX REGISTER X
 AN2166

44 MOTOROLA

Application Note
FLASH Assembly Source Code Flowcharts
Figure 9. Subroutine FlashErase Flowchart

DISABLE INTERRUPTS

FlashErase
(SSTflash.srt)

IN THE WINDOW TO ERASE

STEP 2

SET ERAS BIT

STEP 1

WRITE TO ANY FLASH ADDRESS

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

STEP 9

WAIT TIME tNVS

CLEAR ERAS BIT

CLEAR HVEN BIT

WAIT TIME tNVHL

WAIT TIME tRCV

SET HVEN BIT

CALL ms_delay TO
WAIT tERAS

RETURN

ENABLE INTERRUPTS
 AN2166

MOTOROLA 45

Application Note
Figure 10. Subroutine ProgRow Flowchart

CLEAR HVEN BIT

SET HVEN BIT

STEP 2

SET PGM BIT

STEP 1

WRITE ANY DATA WORD TO A

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

STEP 9

WAIT TIME tNVS

WRITE ONE DATA WORD TO A

WAIT TIME tPGS

CLEAR PGM BIT

WAIT TIME tFPGM

WAIT TIME tNVH

FLASH ROW START ADDRESS

FLASH LOCATION

COMPLETED
PROGRAMMING

THIS ROW?

STEP 10

STEP 11

WAIT TIME tRCV

NO

A
B

C

ProgRow
(SSTflash.srt)

DISABLE INTERRUPTS

SET 32 WORDS TO
PROGRAM IN counter

SET UP FLASH FOR NEXT WRITE

(counter = 0?)

DECREMENT counter

STEP 12

ENABLE INTERRUPTS

RETURN

YES
 AN2166

46 MOTOROLA

Application Note
FLASH Assembly Source Code
Figure 11. Subroutine Delay Flowchart

FLASH Assembly Source Code

* *
* SST FLASH Memory Programming and Erasing on the MC68HC912DT128A/DG128A *
* *

* File Name: SSTflash.mrt Copyright (c) Motorola 2001 *
* *
* Current Revision: 1.0 *
* Current Release Level: RP *
* Current Revision Release Date: July 6, 2001 *
* *
* Current Release Written By: Kazue Kikuchi and Darci Ernst *
* Motorola Applications Engineering - Austin, TX *
* *
* Assembled Under: CASM012Z (P&E Microcomputer Systems, Inc.) *
* Ver.: 3.11 *
* *
* Part Family Software Routine Works With: HC12 0.5u Flash Memory *
* *
* Routine Size (Bytes): 204 *
* Stack Space Used (Bytes): 4 *
* RAM Used (Bytes): 66 *
* Global Variables Used: DATA *
* Subroutine Called: FlashErase, ProgRow *
* *
* Full Functional Description Of Routine Design: *
* SSTflash.mrt is the main routine for the Flash programming and *
* erasing operations on the MC68HC912DT128A and the MC68HC912DG128A.*
* This main routine calls on programming and erasing algorithms in *
* the SSTflash.srt file. This SST programming algorithm minimizes *
* the amount of time needed to program a row of FLASH memory. One *
* row consists of 64 consecutive bytes of FLASH memory within *
* specified address ranges. Before the programming operation is *
* executed, the 64 bytes of programming data are stored in the RAM *

ms_delay

RETURN

(SSTflash.srt)

GENERATE MILLISECOND DELAY TIME
DEPENDING ON VALUE OF times
 AN2166

MOTOROLA 47

Application Note
* buffer. *
* Note: This routine must be executed at a bus frequency of 8MHz *
* because each delay time in the algorithm was calculated *
* with this bus frequency. *

* Motorola reserves the right to make changes without further notice to *
* any product herein. Motorola makes no warranty, representation or *
* guarantee regarding the suitability of its products for any particular *
* purpose, nor does Motorola assume any liability arising out of the *
* application or use of any product, circuit, and specifically disclaims *
* any and all liability, including without limitation consequential or *
* incidental damages. “Typical” parameters can and do vary in different *
* applications. All operating parameters, including “Typicals” must be *
* validated for each customer application by customer's technical experts.*
* Motorola does not convey any license under its patent rights nor the *
* rights of others. Motorola products are not designed, intended, or *
* authorized for use as components in systems intended for surgical *
* implant into the body, or other applications intended to support or *
* sustain life, or for any other application in which the failure of the *
* Motorola product could create a situation where personal injury or death*
* may occur. Should Buyer purchase or use Motorola products for any such *
* intended or unauthorized application, Buyer shall indemnify and hold *
* Motorola and its officers, employees, subsidiaries, affiliates, and *
* distributors harmless against all claims, costs, damages, and expenses, *
* and reasonable attorney fees arising out of, directly or indirectly, any*
* claim of personal injury or death associated with such unintended or *
* unauthorized use, even if such claim alleges that Motorola was negligent*
* regarding the design or manufacture of the part. Motorola and the *
* Motorola symbol are registered trademarks of Motorola, Inc. Motorola, *
* Inc. is an Equal Opportunity/Affirmative Action Employer. *

***** Include Files *****

NOLIST
$INCLUDE “912DG128A_memory.frk” ;Equates for the MC68HC912DG/DT128A
 ; registers and bits used in this
 ; routine
 org RAM
$INCLUDE “SSTflash.var” ;RAM variable definitions
LIST

***** Main Routine *****

 org RAM+$50 ;The code start address
 ;The RAM below this address is used
Start: ; as the FLASH data buffer and spare data
 ; storage

 lds #$4000 ;Set Stack Pointer

 movb #$8F,COPCTL ;Enable Clock Monitor Function
 ; If a loss of clock is detected, take
 ; appropriate action
 AN2166

48 MOTOROLA

Application Note
FLASH Assembly Source Code
 ldx #$00
 ldaa #$1 ;Fill the RAM buffer with 64 bytes
Data_load: ; data to program into FLASH
 staa DATA,x ; (ie. 01,02,03,........,3E,3F,40)
 inca
 inx
 cmpa #!65
 bne Data_load

; movb #$81,MISC ;Select a 32K Window
 ; Select either a 16K Window or a
 ; 32K Window. Default is 16K. NOTE: This
 ; register also controls narrow data bus
 ; and stretch bits.

 movb #$01,PPAGE ;Select PPAGE=1
 ; Select a desired page

 bclr FEEMCR,BOOTP. ;If Boot Block in this page is
 ; protected, clear BOOTP bit.
 ; NOTE: FEELCK ($00F4) must = 0.

 ldx #$8002 ;Load Index Register X with any address
 ; within the page. The address with an
 ; aligned word has to be selected

 jsr FlashErase ;Erase the whole selected page

 ldx #$BF40 ;Load Index Register X with a programming
 ; Row start address ($xx00, $0xx40, $0080,
 ; or $xxC0)

 ldy #DATA ;Load Index Register Y with a RAM buffer
 ; start address
 jsr ProgRow ;Program a Row (32 words)

 bset FEEMCR,BOOTP. ;Set BOOTP bit to protect the Boot Block

Verify: ;After the desired block is programmed,
 movb #!32,COUNTER ; it is recommended that programmed data
 ; be verified
 ldy #DATA ;Load Index Register Y with a RAM buffer
 ; start address
 ldx #$BF40 ;Load Index Register X with a verifying
 ; Row start address
Verify_Loop:
 ldd ,X ;Read data from a FLASH location
 cpd ,Y ;Compare the read data with data in the
 bne Error ; RAM Buffer
 dec COUNTER ;When the verify fails, branch to Error
 beq Success
 inx
 inx
 iny
 AN2166

MOTOROLA 49

Application Note
 iny
 bra Verify_Loop

Success:
 bra * ; ** Programming Successful **
 ; End of program
Error: ; ** Programming Failed **
 bra * ; Take appropriate action

***** Subroutine Body Includes Section *****

$INCLUDE “SSTflash.srt” ;SST FLASH subroutine

;;;

* *
* SST FLASH Memory Programming and Erasing on the MC68HC912DT128A/DG128A *
* *

* File Name: SSTflash.var Copyright (c) Motorola 2001 *
* *
* Current Revision: 1.0 *
* Current Release Level: RP *
* Current Revision Release Date: July 6, 2001 *
* *
* Current Release Written By: Kazue Kikuchi and Darci Ernst *
* Motorola Applications Engineering - Austin, TX *
* *
* Assembled Under: CASM12Z (P&E Microcomputer Systems, Inc.) *
* Ver.: 3.11 *
* *
* Part Family Software Routine Works With: HC12 0.5u Flash Memory *
* *
* RAM Used (Bytes): 66 *
* *
* Description: *
* RAM variable definitions for the main routine SSTflash.mrt. *

***** RAM Variables *****

DATA rmb !64 ;64 data bytes that will be programmed
COUNTER rmb $1 ;1 byte storage of the word number
 ; contained in a row
TIMES rmb $1 ;1 byte in which the delay time will be
 ; determined

;;;

* *
 AN2166

50 MOTOROLA

Application Note
FLASH Assembly Source Code
* SST FLASH Memory Program & Erase Subroutines on the MC68HC912DT/DG128A *
* *

* File Name: SSTflash.srt Copyright (c) Motorola 2001 *
* *
* Current Revision: 1.0 *
* Current Release Level: RP *
* Current Revision Release Date: July 6, 2001 *
* *
* Current Release Written By: Kazue Kikuchi and Darci Ernst *
* Motorola Applications Engineering - Austin, TX *
* *
* Assembled Under: CASM12Z (P&E Microcomputer Systems, Inc.) *
* Ver.: 3.11 *
* *
* Part Family Software Routine Works With: HC12 0.5u Flash Memory *
* *
* *
* Module Size (Bytes): FlashErase 43 *
* ProgRow 62 *
* ms_delay 18 *
* Stack Space Used (Bytes): FlashErase 2 *
* ProgRow 2 *
* WriteFLCR 0 *
* ms_delay 0 *
* RAM Used (Bytes): FlashErase 1 *
* ProgRow 66 *
* ms_delay 1 *
* Global Variable(s) Used: FlashErase None *
* ProgROW DATA *
* ms_delay None *
* Submodule(s) Called: EraseRoutine ms_delay *
* ProgRow ms_delay *
* ms_delay None *
* Calling Sequence: JSR FlashErase, JSR ProgRow *
* JSR ms_delay *
* Entry Label: FlashErase, ProgRow, ms_delay *
* *
* Entry Conditions: FlashErase Flash address defined at *
* Index Register X *
* ProgRow Flash address defined at *
* Index Register X *
* RAM Buffer address defined *
* at Index Register Y *
* 64 programming bytes *
* located at variables DATA *
* ms_delay Delay variable passed in *
* TIMES *
* Number of Exit Points: 3 *
* Exit Label: FlashErase FlashErase_End *
* ProgRow ProgRow_End *
* ms_delay ms_delay_End *
* Exit Conditions: FlashErase None *
* ProgRow None *
* ms_delay None *
 AN2166

MOTOROLA 51

Application Note
* *
* Full Functional Description Of Subroutine: *
* SSTflash.srt consists of two primary subroutines called FlashErase*
* and ProgRow. These routines demonstrate SST FLASH erasing and *
* programming algorithms, respectively. The routines also call *
* another subroutine ms_delay. Since delay times must be met *
* precisely for successful FLASH programming and erasing, additional*
* software was added to measure the delay times. This code is *
* included as comments throughout the file. It is recommended that *
* the user verify all delay times before using this software for *
* production. *
* Note: Each delay time related to SST FLASH program and erase *
* operations was calculated with a bus frequency of 8MHz. *

***** SST FLASH Erase Subroutine *****

FlashErase:
 ;---;
 ; Delay Time Evaluation ;
 ; Initialize Port A bit 0 as output high ;
 ; bset PORTA,PA0. ;Set Port A bit 0 ;
 ; bset DDRA,DDRA0. ;Select output for Port A bit 0 ;
 ;---;
 sei ;Disable maskable interrupts

 bset FEECTL,ERAS. ;Step 1 - Set the ERAS bit

 std ,X ;Step 2 - Write to any FLASH address with
 ; any aligned word within the page to be
 ; erased
 ;---;
 ; Delay Time tNVS Evaluation (Time between points S1 and E1) ;
 ; Measure low level period on Port A bit 0 pin using a scope ;
 ;---;
 ; Delay Evaluation: Point S1
 ; bclr PORTA,PA0. ;Clear Port A bit 0

 ldaa #$1B ;Step 3 - Wait for time tNVS
 dbne A,* ; 1 + (3 x 27) cycles = 82 cycles
 ; (10.25us)

 ; Delay Evaluation: Point E1
 ; bset PORTA,PA0. ;Set Port A bit 0

 bset FEECTL,HVEN. ;Step 4 - Set the HVEN bit

 ;---;
 ; Delay Time tERAS Evaluation (Time between points S2 and E2) ;
 ; Measure low level period on Port A bit 0 pin using a scope ;
 ;---;
 ; Delay Evaluation: Point S2
 ; bclr PORTA,PA0. ;Clear Port A bit 0

 movb #!8,TIMES ;Step 5 - Wait for time tERAS (8.0ms)
 AN2166

52 MOTOROLA

Application Note
FLASH Assembly Source Code
 jsr ms_delay

 ; Delay Evaluation: Point E2
 ; bset PORTA,PA0. ;Set Port A bit 0

 bclr FEECTL,ERAS. ;Step 6 - Clear the ERAS bit

 ;---;
 ; Delay Time tNVHL Evaluation (Time between points S3 and E3) ;
 ; Measure low level period on Port A bit 0 pin using a scope ;
 ;---;
 ; Delay Evaluation: Point S3
 ; bclr PORTA,PA0. ;Clear Port A bit 0

 ldd #$010B ;Step 7 - Wait for time tNVHL
 dbne D,* ; 1 + (3 x 267) cycles = 802 cycles
 ; (100.25us)

 ; Delay Evaluation: Point E3
 ; bset PORTA,PA0. ;Set Port A bit 0

 bclr FEECTL,HVEN. ;Step 8 - Clear the HVEN bit

 ;---;
 ; Delay Time tRCV Evaluation (Time between points S4 and E4) ;
 ; Measure low level period on Port A bit 0 pin using a scope ;
 ;---;
 ; Delay Evaluation: Point S4
 ; bclr PORTA,PA0. ;Clear Port A bit 0

 ldaa #$03 ;Step 9 - Wait for time tRCV
 dbne A,* ; 1 + (3 X 3) cycles = 10 cycles
 ; (1.25us)

 ; Delay Evaluation: Point E4
 ; bset PORTA,PA0. ;Set Port A bit 0

 cli ;Enable maskable interrupts
FlashErase_End:
 rts

***** SST FLASH Programming Subroutine *****

ProgRow:
 ;---;
 ; Delay Time Evaluation ;
 ; Initialize Port A bit 0 as output high ;
 ; bset PORTA,PA0. ;Set Port A bit 0 ;
 ; bset DDRA,DDRA0. ;Select output for Port A bit 0 ;
 ;---;
 sei ;Disable maskable interrupts

 bset FEECTL,PGM. ;Step 1 - Set the PGM bit

 std ,X ;Step 2 - Write to a ROW start address
 AN2166

MOTOROLA 53

Application Note
 ; with any word data
 ;---;
 ; Delay Time tNVS Evaluation (Time between points S5 and E5) ;
 ; Measure low level period on Port A bit 0 pin using a scope ;
 ;---;
 ; Delay Evaluation: Point S5
 ; bclr PORTA,PA0. ;Clear Port A bit 0

 ldaa #$1B ;Step 3 - Wait for time tNVS
 dbne A,* ; 1 + (3 x 27) cycles = 82 cycles
 ; (10.25us)

 ; Delay Evaluation: Point E5
 ; bset PORTA,PA0. ;Set Port A bit 0

 bset FEECTL,HVEN. ;Step 4 - Set the HVEN bit

 ;---;
 ; Delay Time tPGS Evaluation (Time between points S6 and E6) ;
 ; Measure low level period on Port A bit 0 pin using a scope ;
 ;---;
 ; Delay Evaluation: Point S6
 ; bclr PORTA,PA0. ;Clear Port A bit 0

 ldaa #$0E ;Step 5 - Wait for time tPGS
 dbne A,* ; 1 + (3 x 14) cycles = 43 cycles
 ; (5.375us)

 ; Delay Evaluation: Point E6
 ; bset PORTA,PA0. ;Set Port A bit 0
 ;---
 ;- tFPGM is defined as the total time from writing one data -
 ;- word to writing the next data word. (labelled “A” below). -
 ;- For the last word programmed, tFPGM is defined as the -
 ;- time from writing the data word (“A”) to clearing the PGM -
 ;- bit (in the WriteFLCR routine). Both of these loops -
 ;- should be executed in a time between 30 and 40 us. -
 ;- -
 ;- The word-to-next-word time is 245 cycles (30.6 us). -
 ;- The word-to-PGM time is 242 cycles (30.25 us). -
 ;---
 movb #!32,COUNTER ;Write the total word number per
 ; ROW, 32, to COUNTER

Copy_Loop:
 movw 0,Y,0,X ;Step 6 - Copy one word data from the
 ; RAM buffer to the appropriate FLASH
 ; location (“A”)
 ;---;
 ; Delay Time word-to-next-word Evaluation (one loop period ;
 ; starting from point S7 to point E7) ;
 ; Measure low level period on Port A bit 0 pin using a scope ;
 ;---;
 ; Delay Evaluation: Point S7, E7
 ; com PORTA ;Complement Port A bit 0
 AN2166

54 MOTOROLA

Application Note
FLASH Assembly Source Code
 ;---;
 ; Delay Time word-to-PGM Evaluation (Time between points S8 and ;
 ; E8) ;
 ; Measure low level period on Port A bit 0 pin using a scope ;
 ;---;
 ; Delay Evaluation: Point S8
 ; bclr PORTA,PA0. ;Clear Port A bit 0

 inx ;Set next Flash programming location
 inx
 iny ;Set next RAM Buffer location
 iny

 ldaa #$4C ;Step 7 - Delay, part of tFPGM
 dbne A,* ; 1 + (3 x 76) cycles = 229 cycles
 ; (28.625us)

 dec COUNTER ;Step 8 - Repeat step 6 through 8
 bne Copy_Loop ; until all the bytes within the row
 ; are programmed

 bclr FEECTL,PGM. ;Step 9 - Clear the PGM bit

 ; Delay Evaluation: Point E8
 ; bset PORTA,PA0.
 ;---;
 ; Delay Time tNVH Evaluation (Time between points S9 and E9) ;
 ; Measure low level period on Port A bit 0 pin using a scope ;
 ;---;
 ; Delay Evaluation: Point S9
 ; bclr PORTA,PA0. ;Clear Port A bit 0

 ldaa #$0E ;Step 10 - Wait for time tNVH
 dbne A,* ; 1 + (3 x 14) cycles = 43 cycles
 ; (5.375us)

 ; Delay Evaluation: Point E9
 ; bset PORTA,PA0. ;Set Port A bit 0

 bclr FEECTL,HVEN. ;Step 11 - Clear the HVEN bit
 ;---;
 ; Delay Time tRCV Evaluation (Time between points S10 and E10) ;
 ; Measure low level period on Port A bit 0 pin using a scope ;
 ;---;
 ; Delay Evaluation: Point S10
 ; bclr PORTA,PA0. ;Clear Port A bit 0

 ldaa #$03 ;Step 12 - Wait for time tRCV
 dbne A,* ; 1 + (3 x 3) cycles = 10 cycles
 ; (1.25us)

 ; Delay Evaluation: Point E10
 ; bset PORTA,PA0. ;Set Port A bit 0
 AN2166

MOTOROLA 55

Application Note
 cli ;Enable maskable interrupts
ProgRow_End:
 rts

***** Delay Routine *****

* This routine generates unit millisecond delay depending on the value in *
* “TIMES”. For example if times=1, the delay time is 1ms. *
* Delay = [{1 + (2 + 3) * 1597 + 2 + 1 + 3 + 1 + 4 + 3} * (TIMES - 1) *
* {1 + (2 + 3) * 1597 + 2 + 1 + 3 + 1 + 4 + 1 +5} *
* / Bus Frequency *
* = (8000 * TIMES + 3) / 8MHz *
* Initializations required: *
* - Set a value in “TIMES” *
* Values returned: *
* - None *

ms_delay:
 ldd #$063E ;1 cyc.

ms_loop:
 subd #$01 ;2 cyc.
 bne ms_loop ;If the branch is taken, 3 cyc. If the branch
 ; is not taken, 1 cyc.
 tst TIMES ;3 cyc
 nop ;1 cyc
 dec TIMES ;4 cyc.
 bne ms_delay ;If the branch is taken, 3 cyc. If the branch
 ; is not taken, 1 cyc.
ms_delay_End:
 rts ;5 cyc.

EEPROM AUTO Mode Source Code Flowcharts

The main routine AutoEEPROM.mrt initializes the device for erasing
and programming operations. It sets up the clock monitor and timebase
divider for the EEPROM memory and specifies the value and the
location to be programmed. The routine then performs the EEPROM
erase and program operations by calling AutoRoutine twice.

The AutoRoutine subroutine follows the flowcharts shown in Figure 6
and Figure 7 closely. The flowcharts for AutoEEPROM.mrt and
AutoRoutine are Figure 12 and Figure 13, respectively.
 AN2166

56 MOTOROLA

Application Note
EEPROM AUTO Mode Source Code Flowcharts
Figure 12. EEPROM AUTO Mode Main Routine

AutoEEPROM.mrt

TURN ON CLOCK MONITOR

STORE CLOCK DIVIDER VALUE
TO EEDIVH:EEDIVL

STORE ONE WORD DATA TO
RAM DATA BUFFER

LOAD ANY WORD-ALIGNED FLASH
ADDRESS TO PROGRAM / ERASE

TO INDEX REGISTER X

CLEAR BLOCK PROTECTION

SET ERASE SIZE IN ACCUMULATOR

CALL AutoRoutine to
ERASE THE BLOCK

SELECT PROGRAM IN ACCUMULATOR

CALL AutoRoutine to
PROGRAM THE WORD

SET BLOCK PROTECTION

END
 AN2166

MOTOROLA 57

Application Note
Figure 13. Subroutine AutoEEPROM Flowchart

RETURN

AutoRoutine

SAVE SELECTED BULKP, ROW, BYTE,

STEP 1

STEP 4

EEPGM BIT CLEARED?

YES

NO

(AutoEEPROM.srt)

DISABLE INTERRUPTS

AND ERASE BITS INTO EEPROG;
SET EELAT AND AUTO BITS

COPY ONE WORD OF DATA FROM

STEP 2

RAM BUFFER TO ADDRESS IN
X INDEX REGISTER

SET EEPGM BIT

STEP 3

CLEAR EELAT BIT

STEP 5

SET EEPROG TO RESET VALUE

ENABLE INTERRUPTS
 AN2166

58 MOTOROLA

Application Note
EEPROM AUTO Mode Assembly Source Code
EEPROM AUTO Mode Assembly Source Code

* *
* EEPROM AUTO Programming and Erasing on the MC68HC912DT128A/DG128A *
* *

* File Name: AutoEEPROM.mrt Copyright (c) Motorola 2001 *
* *
* Current Revision: 1.0 *
* Current Release Level: RP *
* Current Revision Release Date: July 3, 2001 *
* *
* Current Release Written By: Kazue Kikuchi and Darci Ernst *
* Motorola Applications Engineering - Austin, TX *
* *
* Assembled Under: CASM12Z (P&E Microcomputer Systems, Inc.) *
* Ver.: 3.11 *
* *
* Part Family Software Routine Works With: HC12 0.5u EEPROM Memory *
* *
* Routine Size (Bytes): 68 *
* Stack Space Used (Bytes): 2 *
* RAM Used (Bytes): 2 *
* Global Variables Used: DATA *
* Subroutine Called: AutoRoutine *
* *
* Full Functional Description Of Routine Design: *
* AutoEEPROM.mrt is the main routine for the EEPROM programming and *
* erasing operations using the AUTO mode. It demonstrates AUTO *
* programming and erasing for the MC68HC912DT128A and *
* MC68HC912DT128A. *
* Note: The EEDIV value was calculated with an oscillator frequency of *
* 16MHz. The user must recalculate the EEDIV value to use a *
* different oscillator frequency. *

***** Program Specific Equates *****

auto_BULKerase. equ %00100110 ;Select BULK Erase: set AUTO, ERASE,
 ; EELAT bits, and clear BULKP bit
auto_ROWerase. equ %00101110 ;Select ROW Erase: set AUTO, ROW,
 ; ERASE, EELAT bits, and clear BULKP
 ; bit
auto_WORDerase. equ %10110110 ;Select WORD Erase: set AUTO, BYTE
 ; ERASE and EELAT bits
auto_WORDprogram. equ %10100010 ;Select WORD Program: set AUTO and
 ; EELAT bits

***** Include Files *****

 AN2166

MOTOROLA 59

Application Note
NOLIST
$INCLUDE "912DG128A_memory.frk" ;Equates for the MC68HC912DG/DT128A
 ; registers and bits used in this
 ; routine
 org RAM
$INCLUDE "AutoEEPROM.var" ;RAM variable definitions
LIST

***** Main Routine *****

 org RAM+$50 ;The code start address
 ;The RAM below this address is used
Start: ; as the EEPROM data buffer and spare
 ; data storage

 lds #$4000 ;Set Stack Pointer

 movb #$8F,COPCTL ;Enable Clock Monitor
 ; If a loss of clock is detected, take
 ; appropriate action. Other bits may be
 ; set/cleared for user application.

 movw #$0230,EEDIVH ;If SHADOW word does not set a constant
 ; timebase of 35us, write $02 AND $30
 ; to EEDIVH and EEDIVL, respectively
 ; since the oscillator frequency is
 ; 16MHz
 ;<CAUTION> When EEDIVH:EEDIVL=00:00, the
 ; EEPGM bit is NOT automatically cleared
 ; These registers are "write once"
 ; in normal mode

 movw #$55AA,DATA ;Write one word data $55AA to RAM buffer

 ldx #$0E02 ;Load Index Register X with address of
 ; where the aligned word should be
 ; erased and programmed

 bclr EEPROT,BPROT3. ;Unprotect the block which will be
 ; erased and programmed
 ;<CAUTION> When the programming or
 ; erasing location is protected (except
 ; with bulk erase), the EEPGM bit is
 ; NOT automatically cleared

 ldaa #auto_WORDerase. ;Select Bulk, Row or Word Erase
 jsr AutoRoutine ;Erase the selected EEPROM size using
 ; AUTO Mode

 ldaa #auto_WORDprogram. ;Select Word Program
 jsr AutoRoutine ;Program one word using AUTO Mode

 bset EEPROT,BPROT3. ;Protect the programmed block

 bra *
 AN2166

60 MOTOROLA

Application Note
EEPROM AUTO Mode Assembly Source Code

***** Subroutine Body Includes Section *****

$INCLUDE "AutoEEPROM.srt" ;Auto EEPROM subroutines rts

;;;

* *
* EEPROM AUTO Programming and Erasing on the MC68HC912DT128A/DG128A *
* *

* File Name: AutoEEPROM.var Copyright (c) Motorola 2001 *
* *
* Current Revision: 1.0 *
* Current Release Level: RP *
* Current Revision Release Date: July 3, 2001 *
* *
* Current Release Written By: Kazue Kikuchi and Darci Ernst *
* Motorola Applications Engineering - Austin, TX *
* *
* Assembled Under: CASM12Z (P&E Microcomputer Systems, Inc.) *
* Ver.: 3.11 *
* *
* Part Family Software Routine Works With: HC12 0.5u EEPROM Memory *
* *
* RAM Used (Bytes): 2 *
* *
* Description: *
* RAM variable definitions for AutoEEPROM.mrt. *

***** RAM Variables *****

DATA rmb $2 ;one data word that will be programmed

;;;

* *
* EEPROM AUTO Program and Erase Subroutine on the MC68HC912DT128A/DG128A *
* *

* File Name: AutoEEPROM.srt Copyright (c) Motorola 2001 *
* *
* Current Revision: 1.0 *
* Current Release Level: RP *
* Current Revision Release Date: July 3, 2001 *
* *
* Current Release Written By: Kazue Kikuchi and Darci Ernst *
* Motorola Applications Engineering - Austin, TX *
* *
* Assembled Under: CASM12Z (P&E Microcomputer Systems, Inc.) *
 AN2166

MOTOROLA 61

Application Note
* Ver.: 3.11 *
* *
* Part Family Software Routine Works With: HC12 0.5u EEPROM Memory *
* *
* Module Size (Bytes): AutoRoutine 27 *
* Stack Space Used (Bytes): AutoRoutine 0 *
* RAM Used (Bytes): AutoRoutine 2 *
* Global Variable(s) Used: AutoRoutine DATA *
* Calling Sequence: JSR AutoRoutine *
* Entry Label: AutoRoutine *
* Entry Conditions: AutoRoutine 1 byte setup (BULKP, AUTO, *
* BYTE, ROW, ERASE, EELAT *
* bits) defined at *
* accumulator A *
* 2 bytes address defined at *
* Index Register X *
* 1 programming word located *
* at variable DATA (the *
* erasing operation is not *
* required) *
* Number of Exit Points: 1 *
* Exit Label: AutoRoutine AutoRoutine_End *
* Exit Conditions: AutoRoutine None *
* *
* Full Functional Description Of Subroutine: *
* AutoEEPROM.srt contains one primary subroutine called AutoRoutine. *
* This demonstrates EEPROM erasing and programming in the AUTO mode. *

***** EEPROM AUTO Program and Erase Subroutine *****

AutoRoutine:
 sei ;Disable maskable interrupts
 staa EEPROG ;Step 1 - Select BULKP, BYTE, ROW, and
 ; ERASE bits, and set EELAT and AUTO bits

 ldd DATA ;Step 2 - Copy one word of data from RAM
 std ,X ; buffer to address specified in X
 ; index register

 bset EEPROG,EEPGM. ;Step 3 - Set EEPGM bit

Clear_EEPGM: ;Step 4 - Wait until EEPGM bit is cleared
 brset EEPROG,EEPGM.,Clear_EEPGM

 ;<CAUTION> When EEDIVH:EEDIVL=00:00 or a
 ; programming/erasing location is
 ; protected (except for bulk erase),
 ; the EEPGM bit is NOT automatically cleared

 bclr EEPROG,EELAT. ;Step 5 - Clear EELAT bit

 movb #$80,EEPROG ;Write a reset value to EEPROG register

 cli ;Enable maskable interrupts

AutoRoutine_End:
 rts
 AN2166

62 MOTOROLA

Application Note
EEPROM AUTO Mode Assembly Source Code
 AN2166

MOTOROLA 63

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
 AN2166/D

© Motorola, Inc., 2001

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

	Introduction
	Reference Documents
	MC68HC912DT128A/DG128A vs. MC68HC912DG128
	FLASH Functional Description
	FLASH Memory Mapping
	FLASH Block Protection
	FLASH Control Registers
	Word Alignment
	FLASH Erase Operation
	FLASH Program Operation
	EEPROM Functional Description
	EEPROM Control Registers
	EEPROM Block Protection
	Timebase Initialization and SHADOW Word
	EEPROM Erase Operation
	EEPROM Standard Mode Erasing Algorithm
	EEPROM AUTO Mode Erasing Algorithm
	EEPROM Program Operation
	EEPROM Standard Mode Programming Algorithm
	EEPROM AUTO Mode Programming Algorithm
	Selective Bit Programming
	Practical Considerations for Programming/Erasing
	Evaluating Delay Times for the Sample Code
	FLASH Frequently Asked Questions
	EEPROM Frequently Asked Questions
	FLASH Assembly Source Code Flowcharts
	FLASH Assembly Source Code
	EEPROM AUTO Mode Source Code Flowcharts
	EEPROM AUTO Mode Assembly Source Code

