
Ports 1

www.technologicalarts.com

HCS12 FAMILY

EMBEDDED C USING CODEWARRIOR
INTERFACING WITH THE PORTS

Featuring Bit Twiddling

TECHNOLOGICAL ARTS, INC.
Toll-free: 1-877-963-8996 (USA and Canada)

Phone: +1 (416) 963-8996 Fax: +1 (416) 963-9179

Ports 2

www.technologicalarts.com

BEFORE READING THIS GUIDE . . .

The source code herein is written in Embedded C using the Metrowerks
CodeWarrior 3.1 IDE.

If you are new to CodeWarrior 3.1 or embedded C, you can get a free copy of
Technological Arts’ Embedded C Using CodeWarrior - Getting Started Manual
from our website. This manual will show you how to start a project, where to
write your source code, compile the code, and finally how to download it to your
HCS12 board!

The Embedded C code written herein applies to the 9S12C derivatives of the
HCS12 family, however . . .

The general port concepts are similar for all HCS12 derivatives. The embedded C
coding structure for the ports mentioned is similar for all HCS12s plus/minus a
few registers. We will let you know where you should be concerned with your
own HCS12 derivative.

Ports 3

www.technologicalarts.com

PORT AHEAD….. AYE AYE CAPTAIN!

If you want to program your HCS12 to communicate with the outside world (your
keypad, LCD and other peripherals) then you’ve come to the right place.

Ports are the HCS12’s way to allow your peripherals to communicate with the
HCS12 core.

The purposes for this guide are to:
• Describe the function and reason for using ports
• Describe general port functions and the basis for designating port names
• Introduce Port T and Port AD
• Develop an algorithm for communicating through Ports T and AD
• Define Port T and AD’s registers
• Introduce bit twiddling
• Provide a simple code combining port programming and bit twiddling
• Provide a circuit diagram to correspond with the code
• Provide a resource for finding additional port information

WHAT ARE PORTS ?

Ports are the HCS12’s built in, programmable interface devices that allow your
peripherals to communicate with the HCS12 core. Figure 1 shows a simplified
view of how the ports physically connect the peripherals to the core.

FIGURE 1

Ports 4

www.technologicalarts.com

WHAT ARE THE PURPOSES OF PORTS?

Ports can be programmed to serve several purposes including:
• Controlling data flow
• Controlling data direction

Controlling data flow

External peripherals can transmit and receive data at different speeds. Most ports
can be programmed to control the flow of data to prevent data over run - where a
peripheral is receiving data from the HCS12 faster than it can process.
Figures 2a, 2b and 2c illustrate a simplified flow control process for sending data
to an output device:

Figure 2a – 1. If the HCS12’s core has data to send to port A, it first checks if the
port is ready to accept data. This is to prevent the core’s data from overwriting
data currently being transmitted from port A to the LCD.

FIGURE 2a

Figure 2b – 2. If port A is ready to accept data, the core will transmit the data to
the port via the data bus. If the port is not ready, the core can be programmed to
either periodically check for the port’s readiness, or continue with other tasks
until the port issues an interrupt signal, indicating that it is ready to accept data.

FIGURE 2b

Figure 2c- 3. Port A transmits the data to the LCD

FIGURE 2c

Ports 5

www.technologicalarts.com

Figure 3a, 3b and 3c illustrate the simplified flow control process for receiving
data from an input device.

Figure 3a- 1. If port A is ready to receive data from the keypad, it will wait for a
key to be entered.

FIGURE 3a

Figure 3b- 2. Once port A receives data from the keypad, it will not accept more
data until the current data has been read by the HCS12’s core. The core can be
programmed to either periodically check the port for data, or continue with other
tasks until the port issues an interrupt indicating that it is has data to be read.

FIGURE 3b

Figure 3c- 3. The core reads the data from port A. Port A is now free to accept
data from the keypad.

FIGURE 3c

Ports 6

www.technologicalarts.com

Controlling Data Direction

Most ports can be programmed to allow data to flow in a particular direction.
Some ports are limited to input or output function only. Figure 4a, 4b, 4c
illustrate the possible programmable directions of data flow for most ports.

Figure 4a - direction of all port lines are programmed for output

FIGURE 4a

Figure 4b – direction of all port lines are programmed for input

FIGURE 4b

Figure 4c- some port lines are programmed for input while others are
programmed for output.

FIGURE 4c

Ports 7

www.technologicalarts.com

GENERAL PORTS FUNCTIONS AND DESIGNATIONS

The number of programmable ports and the functionality of each available port
are dependent on your HCS12’s derivative.

A port can be designed to serve one of the three functions:

• dedicated input
• dedicated output
• input and output

Some ports, in addition to I/O are designed to serve a unique function eg- analog
to digital conversion, pulse width modulation etc.

In general, each available port on your HCS12 is a designated letter that identifies
the port’s function and the number of data lines connected to it.

NOTE: The Motorola document xxxPIMVx.pdf, found on the Technological
Art’s resource CD or on the website at www.technologicalarts.com, provides the
port names associated with your HCS12 derivative and their descriptions
including register names and their programmable functions.

Depending on your HCS12’s derivative, some or most port lines will be
physically connected to the HCS12’s external pins. Note: Technological Art’s
HCS12 modules + docking stations provide easy access to these pins. Refer to
your board’s datasheet, under the table H1, for more information.

On the majority of HCS12 derivatives, ports T and AD are connected to the
external HCS12 pins.

We will now introduce ports T and AD, show you how to program their registers,
and create a simple program to communicate between a set of DIP switches and
bar LEDs. This will get you started with programming ports.

Ports 8

www.technologicalarts.com

WHAT DO PORT T AND PORT AD DO?

Port T can be programmed for two functions:

• Providing a gateway for connecting the pulse width modulator and/or the
timer to the corresponding peripherals

• To serve as general I/O

For our program we will be interested in the latter.

Port AD can also be programmed for two functions:

• Providing an 8 channel analog to digital converter
• To serve and general input and output (output available on most HCS12

derivatives)

Again, for our program, we will be interested in the latter.

THE ALGORITHM FOR OUR SIMPLE PROGRAM

Before we dive into programming the port registers we will briefly discuss the
operation of our program.

Figure 5 shows the general interface between the peripherals and the HCS12.

FIGURE 5

THE ALGORITHM

1. Port AD accepts an 8 bit combination from the DIP switches
2. The HCS12 will read the value from Port AD and store it in memory
3. The HCS12 will perform a couple bit twiddling operations on the value
4. The result from bit twiddling will be sent to port T
5. Port T will send the value to the bar LEDs which will display the result

Ports 9

www.technologicalarts.com

PROGRAMMING THE PORT T AND AD REGISTERS

From the program guidelines, we need to program port Ts registers to serve as
general output and PORT AD to serve as general input. We will start with port T
since it is easier.

For port T, there are only two registers we need to be concerned with:

• The data direction register DDRT
• The transmit data register PTT

Register DDRT is an 8 bit data direction register for port T. Each bit corresponds
to the direction of the data line connected to port T .
1= OUTPUT 0= INPUT
We need to configure port T for 8 bit output we will assign 1s to all the DDRT’s
bits. Ie DDRT=0xFF

Register PTT is the 8 bit transmit register that we will use to send data to the bar
LEDS.
Example: PTT = somevalue;

For Port AD, another 8 bit register, we will be interested in the following three
registers:

• ATDCTL23
• ATDCTL45
• ATDDIEN
• PTAD

The detail behind these registers is extensive and can be found on the Analog to
Digital conversion guide at www.technologicalarts.com . Just know that setting
the ATDCTL23 and ATDCTL45 registers to 0 and ATDDIEN to FF

ie- ATDCTL23=0x00;

 ATDCTL45=0x00;
 ATDDIEN = 0xFF;

 will disable these registers’ normal analog to digital functions, and allow the ports

to be used at general input only. PTAD is Port AD’s receive register where the
expected data arrives.

So we have now configured port T and AD for output and input interfacing
respectively. Now we need to focus on the intermediate part of bit twiddling!

Ports 10

www.technologicalarts.com

WHAT IS BIT TWIDDLING?

Bit twiddling is the process of twiddling bits.

Okay - bit twiddling is the process of checking and/or manipulating programmer
selected bit(s) of a byte or word. The results of these operations do not change
state of the non selected bits of the byte or word.

Consider the byte in figure 6. In this case we have chosen to check if the logic
state of bit 6 is set. We will use the embedded C instruction:

 if((PORTAD & 0x40) = =1) /* checking if bit 6 is set */

FIGURE 6

Now consider the byte in figure 7a. This time we have chosen to perform bit
manipulation on bit 6 and bit 2. We have chosen to set bit 6 (to logic 1) and XOR
bit 2 using the following embedded C instructions:

hexvalue = 0xBA; /*assign hexadecimal value to variable hexvalue*/
hexvalue |= 0x40; /* setting bit 6 of hexvalue*/
hexvalue ^= 0x02; /* XOR (with 1) bit 2 of hexvalue*/

FIGURE 7a

 The result of these two operations results in the byte in figure 7b.

FIGURE 7b

Ports 11

www.technologicalarts.com

UPDATING OUR ALGORITHM WITH BIT TWIDDLING

1. Port AD accepts an 8 bit combination from the DIP switches
2. The value from Port AD is stored in a variable
3. Set the bit 6 of the variable
4. XOR bit 2 of the variable
5. The resultant value of the variable will be sent to port T
6. Port T will send the value to the bar LEDs which will display the result

THE CIRCUIT DIAGRAM

Figure 8 shows the circuit diagram of two peripherals – The DIP switches, and
the bar LEDs - that our program is designed to interface to the HCS12 core.

Build the circuit in Figure 8 connecting the bar LEDs and DIP switches

NOTE: Refer to your board’s datasheet to determine the actual pin numbers for
port T and port AD.

FIGURE 8

Ports 12

www.technologicalarts.com

THE SOURCE CODE

//----------------------- Start of code – fully commented --------------------------------

#include <hidef.h> /* common defines and macros */
#include <mc9s12c32.h> /* derivative information */

#pragma LINK_INFO DERIVATIVE "mc9s12c32"

void main(void)
{

// variable declaration
 unsigned char hexvalue;

// Enabling DDRT for general output
 DDRT=0xFF;

// Enabling Analog to digital register for general Input

 ATDCTL23=0x00;
ATDCTL45=0x00;

 ATDDIEN = 0xFF;

// Assign the value at the dip switches, via PTAD to hexvalue
 hexvalue=PTAD;

// Set bit 6 of hex value
 hexvalue |= 0x40; /* setting bit 6 of hexvalue*/

// XOR bit 2 of hex value with 1
 hexvalue ^= 0x04; /* XOR (with 1) bit 2 of hexvalue*/

// Send hexvalue to Port T
 PTT=hexvalue;

}
//------------------------------- End of Source Code --

Ports 13

www.technologicalarts.com

TESTING YOUR CIRCUIT

Alright, time for a little quality assurance testing ie- making sure that your project
works! Make the source code and download it to your HCS12.

1. With your program successfully downloaded, we want to first make sure that

the DIP switch representing MSB of the input corresponds to the LED
representing the MSB of the output.

a. Set DIP switch representing the MSB into a position and note if the
LED is ON or OFF. Change the position of the dipswitch and make
sure the LED changes into the opposite state. The switch position
that causes the MSB of the bar LEDS to turn on corresponds to
your logic 1 position.

b. Verify that the LSB of the DIP switch corresponds to the LSB of bar
LEDs. Also make sure the switch positions for turning the LEDs on
and off correspond to those from step 1a.

2. Now configure the DIP switches for 00000000

Since the bit twiddling operations of our program cause bit 6 to be set and bit
2 to be inverted (XORed by logic1), the output on the LEDs should
correspond with 01000100

3. Try a few of your own dipswitch combinations and verify the output of your

Operation.

SUMMARY

• Ports are the HCS12’s built in, programmable interface devices that allow
your peripherals to communicate with the HCS12

• Ports can be programmed to serve several purposes including:
o Controlling data flow
o Controlling data direction

• The number of programmable ports and the functionality of each available
port are dependent on your HCS12’s derivative

• Depending on your HCS12’s derivative, some or most port lines will be
physically connected to the HCS12’s external pins

• Port T and AD were introduced in this guide included the general function of
each port and how to program each port’s registers

• Bit Twiddling was introduced in this chapter
• For more information on ports consult the following resource:

o The Motorola document xxxPIMVx.pdf found on the Technological
Art’s resource CD or at www.technologicalarts.com the provides port
names of your HCS12 derivative and their descriptions, including
register names and their programmable functions.

