
PWM 1

www.technologicalarts.com

HCS12 FAMILY

EMBEDDED C USING CODEWARRIOR
PROGRAMMING THE PULSE WIDTH MODULATOR

Version 1.0

TECHNOLOGICAL ARTS
#301-533 College St., Toronto, Ontario, Canada M6G 1A8

Toll-free: 1-877-963-8996 (USA and Canada)
Phone: (416) 963-8996 Fax: (416) 963-9179

PWM 2

www.technologicalarts.com

BEFORE READING THIS GUIDE . . .

The source code herein is written in Embedded C using the Metrowerks
CodeWarrior 3.1 IDE.

If you are new to CodeWarrior 3.1 or embedded C, you can get a free copy of
Technological Arts’ Embedded C Using CodeWarrior - Getting Started Manual
from our website. This manual will show you how to start a project, where to
write your source code, compile the code, and finally how to download it to your
HCS12 board!

The Embedded C code written herein applies to the 9S12C derivatives of the
HCS12 family, however . . .

The PWM concepts are the same for all HCS12 derivatives. The embedded C
coding structure for the PWM is similar for all HCS12s plus/minus a few registers.

Where necessary, this document will suggest where you should be concerned
about your HCS12 derivative.

PWM 3

www.technologicalarts.com

PULSE WIDTH WHAT? WHY DO I NEED TO LEARN THIS?

So you want to use your HCS12 module, from Technological Arts, to control the
speed of a motor, or make a light flash? Well your eyes are on the right pages!

The Pulse Width Modulator (PWM), built into most HCS12s, is the device that
allows you to control the speed of a motor, cause an LED to flash, and vary the
voltage/current applied to a load.

The purpose of this guide is to:

• Introduce the concept of pulse width modulation
• Define the use and application for a pulse width modulator
• Identify the pulse width modulators (channels) in the HCS12
• Show how an HCS12 PWM channel uses it’s registers to derives a pulse

width modulated signal
• Demonstrate how to obtain the values for these PWM Registers
• Provide a sample source code used to program the PWM
• Analyze the source code

WHAT IS PULSE WIDTH MODULATION?

Pulse Width Modulation is the process of altering (modulating) the pulse width
(duty cycle) of a TTL signal.

Duty cycle is the duration of a TTL signal’s period that the signal is high. This
value is given as a percentage.

Figure 1 shows a TTL waveform with period T. During the period, the signal is
low for 50% of the period and high for the remaining 50% of the period. We say
that the signal has a duty cycle of 50%.

FIGURE 1

PWM 4

www.technologicalarts.com

Figure 2 shows three independent TTL waveforms with duty cycles of 70%, 80%,
and 100% respectively. In this case the duty cycle of the TTL signal is increasing.

FIGURE 2

WHAT IS A PULSE WIDTH MODULATOR USED FOR?

A pulse width modulator is a device that is programmed to vary a TTL signal’s
duty cycle. The duty cycle produced can be used to control the amount of
voltage/current applied to a load.

Consider figure 3. The pulse width modulator generates a signal whose duty
cycle controls the power delivered to a motor.

FIGURE 3

If the duty cycle produced by the PWM is 0%, then transistor Q1 is turned off.
Therefore, no power is delivered to the motor M.

PWM 5

www.technologicalarts.com

Table 1 shows what happens to the power delivered to the motor as the duty cycle
increases.

 Duty Cycle Transistor Conducts at: Average Power Delivered

To Motor
0% 0% 0%
20% 20% 20%
50% 50% 50%
80% 80% 80%
100% 100% FULL POWER

TABLE 1

In general, the power delivered to a load is proportional the to the duty cycle
applied to the circuit. As a result, the PWM can be used for varying light
intensity, motor speed and pulsation of light.

THE PWM CHANNELS IN THE HCS12

In the HCS12, a PWM is referred to as a channel. For example, an HCS12 that
has four PWM channels means that the HCS12 has four PWMs.

Most HCS12 derivatives come with one or more PWM channel(s).

The 9S12C32, Figure 4, has five PWM channels.

FIGURE 4

Each channel can be individually programmed to produce a signal with its own
period and duty cycle without effecting the operations of neighbouring PWM
channels. A channel must be enabled by the programmer in order to generate a
modulated signal.

PWM 6

www.technologicalarts.com

DERIVING THE PULSE WIDTH MODULATED SIGNAL

The pulse width modulated signal, produced by a PWM channel, is derived from
the HCS12’s bus clock. This is accomplished by programming a series of PWM
registers with values that scale the bus clock down to the desired pulse width
modulated frequency.

WARNING:
Altering between run and boot mode will alter the output frequency of your
PWM. The HCS12, due to PLL and HCS12s that support the serial monitor,
operates under one of two bus clock speeds determined by the HCS12’s operating
mode (run mode or load* mode). Since the PWM frequency is derived from the
bus clock you must consider the mode you are operating in. For example, the
9S12C32 has a run mode bus clock of 4MHz and a boot mode bus clock of 24
MHz.

* On the Technological Arts 32 pin dip module, load mode is also known as boot
mode. The term load mode is used for all other HCS12s supporting the serial
monitor.

PWM 7

www.technologicalarts.com

STEPS FOR PROGRAMMING THE PWM REGISTERS (8bit)

Each PWM channel has four programmable PWM registers used to reduce the bus
clock to the desired pulse width modulated frequency. These registers are:

• PeriodValue
• DutyCycleValue
• PrescaleA
• ScaleA

The programmer selects the values for these registers. There is no set formula for
determining these values.

In the four step algorithm below, each formula (except for the duty cycle) is to
help you keep track of how close you have reduced the bus clock frequency to
your desired pulse width modulated frequency.

STEP 1 – SET THE ‘PeriodValue’ REGISTER

 PeriodValue: scales the bus clock to a smaller size.
 PeriodValue: must be <= 256
 FORMULA : Bus clock / (2* PeriodValue)

STEP 2 – SET THE ‘DutyCycleValue’ REGISTER

 DutyCycleValue sets the duty cycle of the TTL signal
 DutyCycleValue must be <=256
 Formula: Duty Cycle = (DutyCycleValue/ PeriodValue) x100%

NOTE: Selecting Period and Duty Cycle Values

Since: Duty cycle = (DutyCycleValue / Period Value) x 100%

the larger the value of PeriodValue selected the larger and more
precise the range of duty cycle values we can represent.

For example, assume we have Period Value =100. DutyCycle Values
of 1, 2 . .100 correspond to the Duty Cycles of 1%, 2%. . . 100%.

Conversely, assume we have Period Value = 25. A 50% duty cycle,
for example, cannot be precisely obtained as Duty Cycle value =12.5.
Decimal values can not be sent the to the PWM’s registers. The
closest value we can use is either 12 or 13 which does not yield a 50%
duty cycle.

PWM 8

www.technologicalarts.com

STEP 3 - SET the ‘PreScaleA’ REGISTER

PreScaleA: further scales the value of bus clock after being
 reduced by the PeriodValue
PreScaleA: The 3 bit combinations in table 2 show the value the

 Bus clock (referred to as Clock A) is scaled by
Formula: (Scaled Bus Clock)/ (2^n) where n<=8 and

‘Scaled Bus Clock’ = Bus clock / PeriodValue

TABLE 2

STEP 4- SET THE ‘ScaleA’ REGISTER

 ScaleA: Further scales the clock after scaled by PeriodValue and

 PreScaleA
 ScaleA: must be <=256
 Forumla: (Further Scaled Bus Clock) /ScaleA where
 Further Scaled Bus Clock = Bus Clock / PeriodValue / PrescaleA

IN SUMMERIZING THE REGISTER VALUES:

Desired PWM Frequency = Bus Clock / PeriodValue / PrescaleA / ScaleA

The example problem on the next page will help solidify your understanding of
determining the register values.

PWM 9

www.technologicalarts.com

EXAMPLE

PROBLEM:

Determine the PWM register values:

• PeriodValue (used the reduce the clock bus)
• DutyCycleValue
• PrescaleA
• ScaleA

required to generate pulse width modulated signal with 10Hz and a duty cycle of
50%. The 9S12C32 is used and will operate in run mode.

SOLUTION:

Since we are using the 9S12C32 in run mode, the bus clock = 4MHz. We
have to reduce 4MHz to 10Hz by programming the PWM registers with
the appropriate values.

STEP 1: REGISTER PERIODVALUE

Let PeriodValue=250

Bus clock / (2 x Period Value) = 4MHz/(2x 250) = 16kHZ

250 was selected to give us a nice round figure which can be further
reduced by the Scale A Value and the PrescaleA

STEP 2: REGISTER DUTYCYCLEVALUE

 Let DutyCycleValue=125

 Duty Cycle = (DutyCycleValue/ PeriodValue) x100%
 Duty Cycle=(125/250) *100% = 50%

PWM 10

www.technologicalarts.com

STEP 3: REGISTER PRESCALE A

Let PrescaleA = 4

NOTE: 4 is the value submitted to the register. 2^4=16 is the factor

 that the bus clock is reduced by

(Bus clock / PeriodValue) / (2^n)
(16kHz)/ (16) = 1kHz

1Khz can be easily reduced to 10 Hz by dividing by 100.

 STEP 4: REGISTER SCALED A

 Scaled A Value = 100
 1kHz / Scale A Value =10 Hz

ONE NOTE BEFORE SHOWING YOU THE CODE . . .

For simplicity we determined the register values in the order of

• PeriodValue (used the reduce the clock bus)
• DutyCycleValue
• PrescaleA
• ScaleA

However, when we program the HCS12 we reverse the order. Don’t worry the
values for each register do not change, only the order they are programmed, in
essence:

• ScaleA
• PrescaleA
• PeriodValue (used the reduce the clock bus)
• DutyCycleValue

Changing PWM signal at runtime
You can change the values of the DutyCycleValue Register and the PeriodValue
Register during runtime. Each PWM channel has its own counter. Changes to the
period and duty cycle do not take effect until the counter resets back to 0. Thus
there is no signal overlap when the signal transitions from one frequency to
another.

And with out further a due here is the embedded C code for our 10Hz 50%
duty cycle PWM signal!

PWM 11

www.technologicalarts.com

PROGRAMMING THE MICROCONTROLLER

The Embedded C code that programs the HCS12 PWM to generate the 10Hz 50%
signal derived on the previous page is listed below. In CodeWarrior, create a new
project called PWM. Open the main.c from the source window. Delete the code
that is in there. Copy and paste the following code:

//------------------------------------- START OF CODE ---------------------------------
#include <hidef.h> /* common defines and macros */
#include <mc9s12c32.h> /* derivative information */

#pragma LINK_INFO DERIVATIVE "mc9s12c32"
#pragma CODE_SEG DEFAULT
void main(void)
{

 //Enabling portT for PWM0
 MODRR =0x01; /*

 The line MODRR=0x01 may not be
 necessary if your PWM
 in not multiplexed with the Timer module.
 Check the block diagram of your circuit.
 */

 PWMCLK=0x01;
 PWMSCLA=0x32;
 PWMPRCLK=0x04;
 PWMPER0=0xF9;
 PWMDTY0=0x7B;
 PWME=0x01;

while(1){

 }
}

//------------------------------------ END OF CODE ---------------------------------------

PWM 12

www.technologicalarts.com

MAKE THE SOURCE CODE DOWNLOAD THE CODE TEST
PWM

Click MAKE on CodeWarrior, set your HCS12 module into boot mode, hit reset
and then download your program to the HCS12. Once the program has
downloaded, switch the module into run mode and then select reset again.

If you have done everything correctly the user LED should be flashing!

 NOTE: If you do not have a user LED connected to PWM0 (PT0) you can use

the circuit in figure 5 and connect it to PT0 using a jumper wire. Use the
datasheet for your HCS12 board to identify the pin number
corresponding to PT0.

FIGURE 4

Don’t worry if you don’t understand the source code on the previous page. On the
next page we will analyze it.

PWM 13

www.technologicalarts.com

ANALYZING THE SOURCE CODE

In essence, the purpose of the code is to initialize each of the appropriate PWM
registers to produce the 10Hz 50% duty cycle. This section briefly describes each
register accessed in the source code.

NOTE: each bit in the MODRR, PWMCLK and PWME register corresponds to
the PWM channel. For example:

PWME=0x01 Enables PWM0 (PWM channel 0), by setting bit 0 , and
PWMCLK=0x01 sets PWM0 to use the ScaleA clock

NOTE: this section refers to the registers on the 9S12C32 derivative. Consult
Motorola’s documentation - S12PWMxxx.pdf

REGISTER DESCRIPTIONS

MODRR =0x01;
This line may not be necessary if your PWM is not multiplexed with the Timer
module. Check the block diagram of your HCS12. A set bit means that the
corresponding PWM channel will be multiplexed to corresponding bit onPort T.
A cleared bit means the corresponding timer channel will be multiplexed to the
corresponding bit on Port T
In this line PWM0 is multiplex to Port T (PT0)

PWMCLK=0x01;

 BIT 0 ie- PWM0 is set meaning that the Scaled A clock will be use
 If BIT 0 were cleared, Clock A would be modulated.

PWMSCLA=0x32;
Sets the Scale A the Hex equivalent of 100

PWMPRCLK=0x04;
Sets the Prescale A to the Hex equivalent of 4.

PWMPER0=0xF9;
Sets the PeriodValue to the Hex equivalent of 250.

PWMDTY0=0x7B;
Sets the DutyCycleValue to the Hex equivalent of 125

PWME=0x01;
Enables PWM0. We enable the PWM channels last. The moment you enable a
PWM channel, it starts outputting a signal with the values contained in the
registers. We want to make sure that our correct register values are loaded before
the PWM is enabled.

PWM 14

www.technologicalarts.com

16 BIT PERIODVALUE AND DUTYCYCLEVALUE REGISTERS

The PeriodValue and the DutyCycleValue registers can each extend their
value range up to 65536 to allow more precise values for duty cycle. This is done
by concatenating two PWM channels, forming a 16bit PeriodValue Register and a
16bit DutyCycleValue.

When concatenating two PWM channels, either PWM0 and PWM1 or PWM2
and PWM3 the higher PWM channel will produce the output signal.

Refer to the Motorola documentation - S12PWMxxx.pdf for more information on
concatenating under the register description chapter.

SUMMARY

• The pulse width modulator is an HCS12 device which can produce a TTL
signal who’s frequency and duty cycle can be programmed

• PWMs can be found in most HCS12s.
• Depending on the derivative, Most HCS12s have 1 or more PWMs known has

PWM channels.
• Each PWM channel has four programmable registers programmed to derive a

desired frequency and duty cycle from the bus clock
• The method for determining the values of these registers are describe in this

guide
• IN SUMMERIZING THE REGISTER VALUES:
 Desired PWM Frequency = Bus Clock / PeriodValue / PrescaleA / ScaleA

• The duty cycle and frequency can be programmed to changed during runtime
• Programming the PWM in embedded C, and a description of the registers

programmed, are described in this guide

HCS12 RESOURCES

Motorola Documentation

Motorola documentation for your HCS12 derivative can be found on the
Technological Arts resource CD or on the web at www.technologicalarts.com

PWM Register Names, and PWM block diagrams can be found in Motorola
documentation - S12PWMxxx.pdf

